Molecular Medicine Reports 2015-08-01

Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells.

Tie Liu, Bin Wu, Yahong Wang, Huijuan He, Ziying Lin, Jianxin Tan, Lawei Yang, David W Kamp, Xu Zhou, Jinfeng Tang, Haili Huang, Liangqing Zhang, Liu Bin, Gang Liu

文献索引:Mol. Med. Report. 12 , 1914-22, (2015)

全文:HTML全文

摘要

Particulate matter 2.5 (PM2.5) is a significant risk factor for asthma. A recent study revealed that autophagy was associated with asthma pathogenesis. However, the specific mechanisms underlying PM2.5-induced autophagy in asthma have remained elusive. In the present study, PM2.5-induced autophagy was evaluated in Beas-2B human bronchial epithelial cells and the potential molecular mechanisms were investigated. Using electron microscopy, immunofluorescence staining and immunoblot studies, it was confirmed that PM2.5 induced autophagy in Beas-2B cells as a result of PM2.5-mediated inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway in Beas-2B cells. LY294002, a PI3K inhibitor, reduced the accumulation of microtubule-associated protein 1 light chain 3 II and attenuated the effect of PM2.5. Phosphorylated (p-)p38, p-extracellular signal-regulated kinase and p-c-Jun N-terminal kinase were dephosphorylated following exposure to PM2.5. The roles of p53, reactive oxygen species scavenger tetramethylthiourea and autophagy inhibitor 3-methyladenine in PM2.5-induced autophagy in Beas-2B cells were also investigated. The results suggested that the PI3K/Akt/mTOR signaling pathway may be a key contributor to PM2.5-induced autophagy in Beas-2B cells. The results of the present study therefore provided an a insight into potential future clinical applications targeting these signaling pathways, for the prevention and/or treatment of PM2.5-induced lung diseases.


相关化合物

  • 二甲基亚砜
  • 3-甲基腺嘌呤
  • 8-辛酰氧基芘-1,3,6...
  • 四甲基硫脲

相关文献:

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

2015-01-01

[EMBO Mol. Med. 7(1) , 102-23, (2015)]

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

更多文献...