Molecular Plant-Microbe Interactions 2012-11-01

Nitric oxide-mediated stress imprint in potato as an effect of exposure to a priming agent.

Jolanta Floryszak-Wieczorek, Magdalena Arasimowicz-Jelonek, Grzegorz Milczarek, Lukasz Janus, Sylwia Pawlak-Sprada, Dariusz Abramowski, Joanna Deckert, Hanna Billert

文献索引:Mol. Plant Microbe Interact. 25(11) , 1469-77, (2012)

全文:HTML全文

摘要

We investigated how potato exposed to a chemical agent could activate nitric oxide (NO)-dependent events facilitating more potent defense responses to a subsequent pathogen attack. Obtained data revealed that all applied inducers, i.e., β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), laminarin, or 2,6-dichloroisonicotinic acid (INA), were active stimuli in potentiating NO synthesis in the primed potato. It is assumed, for the mechanism proposed in this paper, that priming involves reversible S-nitrosylated protein (S-nitrosothiols [SNO]) storage as one of the short-term stress imprint components, apart from epigenetic changes sensitized by NO. Based on BABA- and GABA-induced events, it should be stated that a rise in NO generation and coding the NO message in SNO storage at a relatively low threshold together with histone H2B upregulation might create short-term imprint activation, facilitating acquisition of a competence to react faster after challenge inoculation. Laminarin elicited strong NO upregulation with an enhanced SNO pool-altered biochemical imprint in the form of less effective local recall, nevertheless being fully protective in distal responses against P. infestans. In turn, INA showed the most intensified NO generation and abundant formation of SNO, both after the inducer treatment and challenge inoculation abolishing potato resistance against the pathogen. Our results indicate, for the first time, that a precise control of synthesized NO in cooperation with reversible SNO storage and epigenetic modifications might play an important role in integrating and coordinating defense potato responses in the priming phenomenon.


相关化合物

  • (S)-3-氨基丁酸
  • 昆布多糖
  • DL-3-氨基丁酸
  • 2,6-二氯吡啶-4-甲...

相关文献:

The proteome response of potato leaves to priming agents and S-nitrosoglutathione.

2013-01-01

[Plant Sci. 198 , 83-90, (2013)]

Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina.

2012-12-01

[Plant Physiol. Biochem. 61 , 169-79, (2012)]

Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean.

2012-07-16

[J. Proteomics 75(13) , 4151-64, (2012)]

Cloning and characterization of a novel beta-transaminase from Mesorhizobium sp. strain LUK: a new biocatalyst for the synthesis of enantiomerically pure beta-amino acids.

2007-03-01

[Appl. Environ. Microbiol. 73(6) , 1772-82, (2007)]

DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins.

2010-05-01

[Mol. Plant Microbe Interact. 23(5) , 585-92, (2010)]

更多文献...