Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery.
Luis Nogueiras-Nieto, Eduardo Sobarzo-Sánchez, José Luis Gómez-Amoza, Francisco J Otero-Espinar
文献索引:Eur. J. Pharm. Biopharm. 80(3) , 585-95, (2012)
全文:HTML全文
摘要
The competitive interactions between the poly-[propylene oxide] (POO)-poly-[ethylene oxide] (PEO) block copolymer poloxamer 407 (Pluronic F127) and two drugs, triamcinolone acetonide and ciclopirox olamine, by the formation of inclusion complexes with two cyclodextrin hydrophilic derivatives, hydroxypropyl-β-cyclodextrin (HPβCD; molar substitution (MS) 0.65) and partially methylated-β-cyclodextrin (MβCD; MS 0.57), were studied by means of one-dimensional (1)H NMR, 2D ROESY experiments, solubility studies and drug release studies. 1D and 2D NMR and solubility studies indicate that both triamcinolone acetonide and ciclopirox olamine form stable inclusion complexes with the cyclodextrin derivatives. In the case of ciclopirox olamine the complex was more stable at pH 1. Effective complexation of poloxamer with the two cyclodextrins (CDs) was also evidenced by NMR analysis, and competitive displacement of the drugs from the CD cavity by the polymer was observed. Drug solubility in CD solutions was not modified by the addition of polymers, indicating that a decrease in solubility due to the competitive displacement is probably compensated by the solubilizing effect of polymer micellization. Finally, polypseudorotaxanes formation has a significant influence on the release of the drugs studied. Changes in the release rate depend on the stability of drug-CD inclusion complex and on cyclodextrin concentration in the bulk solution; so polypseudorotaxane formation can be employed to modulate drug controlled release from thermosensitive hydrogels.Copyright © 2011 Elsevier B.V. All rights reserved.
相关化合物
相关文献:
2014-07-07
[Mol. Pharm. 11(7) , 1991-6, (2014)]
2015-03-01
[Pharm. Dev. Technol. 20(2) , 197-203, (2015)]
2014-07-01
[Antimicrob. Agents Chemother. 58(7) , 3837-42, (2014)]
2013-04-01
[Eur. J. Pharm. Biopharm. 83(3) , 370-7, (2013)]
2014-06-01
[J. Dermatolog. Treat. 25(3) , 256-9, (2014)]