Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent.
Chongshen Guo, Haijun Yu, Bing Feng, Weidong Gao, Mei Yan, Zhiwen Zhang, Yaping Li, Shaoqin Liu
文献索引:Biomaterials 52 , 407-16, (2015)
全文:HTML全文
摘要
Photothermal ablation (PTA) therapy has been viewed as an invasive option for cancer therapy with minimal deconstruction of healthy tissues. In this study, a potent candidate of (NH4)xWO3 nanocube was developed for PTA treatment of metastatic breast cancer in the second near-infrared (NIR) window. It was found that the as-synthesized (NH4)xWO3 nanocube had significant photoabsorption across the whole NIR window of 780-2500 nm and exhibited considerable photo-heat conversion efficiency. Moreover, the as-prepared (NH4)xWO3 nanocube displayed good biocompatibility and high cellular uptake efficiency through endocytosis pathway without nuclei entry. The PTA study employing 1064 nm laser in the second NIR window revealed that (NH4)xWO3 nanocubes induced significant cell necrosis and apoptosis by producing obviously hyperthermia effect inside cancer cells. Using an orthotopicly implanted breast tumor model, it demonstrated that the (NH4)xWO3 nanocube was a promising photothermal agent for effective ablation of solid tumors and suppressing their distant metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
相关化合物
相关文献:
2015-01-01
[J. Comput. Assist. Tomogr. 39 , 975-80, (2015)]
Firouzabadi, H. et al.
[Synlett , 413, (1999)]
[Tetrahedron Lett. 47 , 5167, (2006)]