BMC Biotechnology 2011-01-01

Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10.

Ondřej Kaplan, Karel Bezouška, Ondřej Plíhal, Rüdiger Ettrich, Natallia Kulik, Ondřej Vaněk, Daniel Kavan, Oldřich Benada, Anna Malandra, Ondřej Sveda, Alicja B Veselá, Anna Rinágelová, Kristýna Slámová, Maria Cantarella, Jürgen Felsberg, Jarmila Dušková, Jan Dohnálek, Michael Kotik, Vladimír Křen, Ludmila Martínková

文献索引:BMC Biotechnol. 11 , 2, (2011)

全文:HTML全文

摘要

Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult.A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution.The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.


相关化合物

  • 2-苯丙腈

相关文献:

Conversion of sterically demanding α,α-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.

2012-01-01

[Appl. Environ. Microbiol. 78 , 48 - 57, (2012)]

Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328.

1993-08-01

[Appl. Microbiol. Biotechnol. 39(6) , 720-5, (1993)]

Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils.

2008-11-01

[Appl. Microbiol. Biotechnol. 81(2) , 371-8, (2008)]

Enhancement of enzyme activity and enantioselectivity via cultivation in nitrile metabolism by Rhodococcus sp. CGMCC 0497.

2002-02-01

[Biotechnol. Appl. Biochem. 35(Pt 1) , 61-7, (2002)]

更多文献...