The mode of toxic action of the pesticide gliftor: the metabolism of 1,3-difluoroacetone to (-)-erythro-fluorocitrate.
K I Menon, M G Feldwick, P S Noakes, R J Mead
文献索引:J. Biochem. Mol. Toxicol. 15(1) , 47-54, (2001)
全文:HTML全文
摘要
The biochemical toxicology of 1,3-difluoroacetone, a known metabolite of the major ingredient of the pesticide Gliftor (1,3-difluoro-2-propanol), was investigated in vivo and in vitro. Rat kidney homogenates supplemented with coenzyme A, ATP, oxaloacetate, and Mg2+ converted 1,3-difluoroacetone to (-)-erythro-fluorocitrate in vitro. Administration of 1,3-difluoroacetone (100 mg kg(-1) body weight) to rats in vivo resulted in (-)-erythro-fluorocitrate synthesis in the kidney, which was preceded by an elevation in fluoride levels and followed by citrate accumulation. Animals dosed with 1,3-difluoroacetone did not display the 2-3 hour lag phase in either (-)-erythro-fluorocitrate synthesis or in citrate and fluoride accumulation characteristic of animals dosed with 1,3-difluoro-2-propanol. We demonstrate that the conversion of 1,3-difluoro-2-propanol to 1,3-difluoroacetone by an NAD+-dependent oxidation is the rate-limiting step in the synthesis of the toxic product, (-)-erythro-fluorocitrate from 1,3-difluoro-2-propanol. Prior administration of 4-methylpyrazole (90 mg kg(-1) body weight) was shown to prevent the conversion of 1,3-difluoro-2-propanol (100 mg kg(-1) body weight) to (-)-erythro-fluorocitrate in vivo and to eliminate the fluoride and citrate elevations seen in 1,3-difluoro-2-propanol-intoxicated animals. However, administration of 4-methylpyrazole (90 mg kg(-1) body weight) to rats 2 hours prior to 1,3-difluoroacetone (100 mg kg(-1) body weight) was ineffective in preventing (-)-erythro-fluorocitrate synthesis and did not diminish fluoride or citrate accumulation in vivo. We conclude that the prophylactic and antidotal properties of 4-methylpyrazole seen in animals treated with 1,3-difluoro-2-propanol derive from its capacity to inhibit the NAD+-dependent oxidation responsible for converting 1,3-difluoro-2-propanol to 1,3-difluoroacetone in the committed step of the toxic pathway.
相关化合物
相关文献:
1999-05-01
[Xenobiotica 29(5) , 533-45, (1999)]
1998-01-01
[J. Biochem. Mol. Toxicol. 12(1) , 41-52, (1998)]