Journal of Bacteriology 2002-10-01

Metabolism of dichloromethylcatechols as central intermediates in the degradation of dichlorotoluenes by Ralstonia sp. strain PS12.

Katrin Pollmann, Stefan Kaschabek, Victor Wray, Walter Reineke, Dietmar H Pieper

文献索引:J. Bacteriol. 184(19) , 5261-74, (2002)

全文:HTML全文

摘要

Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.


相关化合物

  • 3,4-二氯甲苯
  • 2,4-二氯甲苯

相关文献:

Thermochemistry of molecular complexes. 4. Molecular complexes of I2 with chloromethylbenzenes. Greaux JB, et al.

[J. Incl. Phenom. Mol. Recog. Chem. 13(3) , 245-48, (1992)]

更多文献...