Translational Stroke Research 2015-04-01

Warfarin pretreatment reduces cell death and MMP-9 activity in experimental intracerebral hemorrhage.

Frieder Schlunk, Elena Schulz, Arne Lauer, Kazim Yigitkanli, Waltraud Pfeilschifter, Helmuth Steinmetz, Eng H Lo, Christian Foerch

文献索引:Transl. Stroke Res. 6(2) , 133-9, (2015)

全文:HTML全文

摘要

Little is known about the pathophysiology of oral anticoagulation-associated intracerebral hemorrhage (OAC-ICH). We compared hematoma volume, number of terminal deoxynucleotidyl dUTP nick-end labeling (TUNEL)-positive cells (indicating cell death), MMP-9 levels, and perilesional edema formation between warfarin-treated mice and controls. Intracerebral hemorrhage was induced by an injection of collagenase into the right striatum. Twenty-four hours later, hematoma volume was measured using a photometric hemoglobin assay. Cell death was quantified using TUNEL staining. MMP-9 levels were determined by zymography, and edema formation was assessed via the wet-dry method. Warfarin increased hematoma volume by 2.6-fold. The absolute number of TUNEL-positive cells in the perihematomal zone was lower in warfarin-treated animals (300.5 ± 39.8 cells/mm2) than in controls (430.5 ± 38.9 cells/mm2; p = 0.034), despite the larger bleeding volume. MMP-9 levels were reduced in anticoagulated mice as compared to controls (p = 0.018). Perilesional edema formation was absent in warfarin mice and modestly present in controls. Our results suggest differences in the pathophysiology of OAC-ICH compared to intracerebral hemorrhage occurring under normal coagulation. A likely explanation is that thrombin, a strong inductor of apoptotic cell death and blood-brain barrier disruption, is produced to a lesser extent in OAC-ICH. In humans, however, we assume that the detrimental effects of a larger hematoma volume in OAC-ICH by far outweigh potential protective effects of thrombin deficiency.


相关化合物

  • 杀鼠灵
  • 华法林钠

相关文献:

Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.

2010-01-01

[Chem. Res. Toxicol. 23 , 171-83, (2010)]

Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).

2011-12-01

[J. Sci. Ind. Res. 65(10) , 808, (2006)]

Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).

2005-05-05

[J. Med. Chem. 48 , 3269-79, (2005)]

Developing structure-activity relationships for the prediction of hepatotoxicity.

2010-07-19

[Chem. Res. Toxicol. 23 , 1215-22, (2010)]

A predictive ligand-based Bayesian model for human drug-induced liver injury.

2010-12-01

[Drug Metab. Dispos. 38 , 2302-8, (2010)]

更多文献...