Stain technology 1987-01-01

Stabilization of silver chromate Golgi impregnation in rat central nervous system neurons using photographic developers. II. Electron microscopy.

F G Wouterlood, S Paniry, A Pattiselanno

文献索引:Stain Technol. 62(1) , 7-21, (1987)

全文:HTML全文

摘要

The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride "toning" is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.


相关化合物

  • 铬酸银

相关文献:

Luis Simarro Lacabra [1851-1921]: from Golgi to Cajal through Simarro, via Ranvier?

2001-03-01

[J. Hist. Neurosci. 10(1) , 19-26, (2001)]

Stabilization of silver chromate Golgi impregnation in rat central nervous system neurons using photographic developers. I. Light microscopy.

1986-11-01

[Stain Technol. 61(6) , 337-52, (1986)]

Techniques for converting Golgi precipitate in CNS neurons into stable electron microscopic markers.

1992-12-01

[Microsc. Res. Tech. 23(4) , 275-88, (1992)]

Chemical reduction of silver chromate: a procedure for electron microscopical analysis of Golgi-impregnated neurons.

1983-04-01

[J. Neurosci. Methods 7(4) , 295-308, (1983)]

Implantable power-sources: a review.

1984-01-01

[J. Med. Eng. Technol. 8(2) , 56-63, (1984)]

更多文献...