Cellular and Molecular Neurobiology 2011-03-01

The effect of spider toxin PhTx3-4, ω-conotoxins MVIIA and MVIIC on glutamate uptake and on capsaicin-induced glutamate release and [Ca2+]i in spinal cord synaptosomes.

Jomara M Gonçaves, Juliano Ferreira, Marco Antonio M Prado, Marta N Cordeiro, Michael Richardson, Ana Cristina do Nascimento Pinheiro, Marco A Romano Silva, Celio José de Castro Junior, Alessandra H Souza, Marcus Vinicius Gomez

文献索引:Cell. Mol. Neurobiol. 31(2) , 277-83, (2011)

全文:HTML全文

摘要

In spinal cord synaptosomes, the spider toxin PhTx3-4 inhibited capsaicin-stimulated release of glutamate in both calcium-dependent and -independent manners. In contrast, the conus toxins, ω-conotoxin MVIIA and xconotoxin MVIIC, only inhibited calcium-dependent glutamate release. PhTx3-4, but not ω-conotoxin MVIIA or xconotoxin MVIIC, is able to inhibit the uptake of glutamate by synaptosomes, and this inhibition in turn leads to a decrease in the Ca(2+)-independent release of glutamate. No other polypeptide toxin so far described has this effect. PhTx3-4 and ω-conotoxins MVIIC and MVIIA are blockers of voltage-dependent calcium channels, and they significantly inhibited the capsaicin-induced rise of intracellular calcium [Ca(2+)](i) in spinal cord synaptosomes, which likely reflects calcium entry through voltage-gated calcium channels. The inhibition of the calcium-independent glutamate release by PhTx3-4 suggests a potential use of the toxin to block abnormal glutamate release in pathological conditions such as pain.


相关化合物

  • ω-芋螺毒素MVIIC
  • 醋酸齐考诺肽

相关文献:

Mechanisms underlying mechanosensitivity of mesenteric afferent fibers to vascular flow.

2007-08-01

[Am. J. Physiol. Gastrointest. Liver Physiol. 293(2) , G422-8, (2007)]

Glutamate regulates neurite outgrowth of cultured descending brain neurons from larval lamprey.

2007-02-01

[Dev. Neurobiol. 67(2) , 173-88, (2007)]

Effects of Ca2+ channel antagonists on acetylcholine and catecholamine releases in the in vivo rat adrenal medulla.

2004-07-01

[Am. J. Physiol. Regul. Integr. Comp. Physiol. 287(1) , R161-6, (2004)]

Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway.

2005-01-01

[Neuroscience 134(3) , 987-1000, (2005)]

Hyposmolarity evokes norepinephrine efflux from synaptosomes by a depolarization- and Ca2+ -dependent exocytotic mechanism.

2005-10-01

[Eur. J. Neurosci. 22(7) , 1636-42, (2005)]

更多文献...