Neurochemistry International 1996-10-01

GABA transporter heterogeneity: pharmacology and cellular localization.

L A Borden

文献索引:Neurochem. Int. 29 , 335, (1996)

全文:HTML全文

摘要

gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. GABA is cleared from the synaptic cleft by specific, high-affinity, sodium- and chloride-dependent transporters, which are thought to be located on presynaptic terminals and surrounding glial cells. While early studies suggested a distinction between neuronal and glial GABA transport, molecular cloning has revealed the existence of genes for four distinct GABA transporters (termed GAT-1, GAT-2, GAT-3 and BGT-1), thus revealing a greater heterogeneity than previously suspected. Heterologous expression has allowed a detailed characterization of their pharmacological properties, and has revealed that GAT-1 is the site of action of the anticonvulsant drug, Tiagabine. In-situ hybridization and immunocytochemistry demonstrate that each transporter has a unique regional distribution in the brain; in conjunction with experiments utilizing cell cultures, the neuronal vs glial localization of the various transporters is being elucidated. Future studies will be directed at determining the role of each transporter in the regulation of GABAergic transmission, and in the design of additional subtype-specific inhibitors, which may serve as novel therapeutic agents for the treatment of neuropsychiatric disorders.


相关化合物

  • (S)-SNAP5114

相关文献:

GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors.

2000-09-01

[Neuropharmacology 39 , 2399-2407, (2000)]

GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii.

2012-01-01

[PLoS Pathog. 8 , e1003051, (2012)]

更多文献...