Aquatic Toxicology 2004-03-10

Environmental risk limits for antifouling substances.

Annemarie P van Wezel, P van Vlaardingen

文献索引:Aquat. Toxicol. 66(4) , 427-44, (2004)

全文:HTML全文

摘要

In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected.


相关化合物

  • 抑菌灵
  • 福美锌

相关文献:

Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain)

2011-05-01

[Mar. Pollut. Bull. 62(5) , 985-91, (2011)]

Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.

2011-03-01

[Environ. Toxicol. Chem. 30(3) , 692-703, (2011)]

Applicability of microwave-assisted extraction combined with LC-MS/MS in the evaluation of booster biocide levels in harbour sediments.

2011-01-01

[Chemosphere 82(1) , 96-102, (2011)]

Study on the new antifouling compounds in Korean coasts.

2010-11-01

[Bull. Environ. Contam. Toxicol. 85(5) , 538-43, (2010)]

Environmental risks associated with booster biocides leaching from spent anti-fouling paint particles in coastal environments.

2014-12-01

[Water Environ. Res. 86(12) , 2330-7, (2014)]

更多文献...