Drug Metabolism and Disposition 2007-04-01

The absorption, metabolism, and excretion of the novel neuromodulator RWJ-333369 (1,2-ethanediol, [1-2-chlorophenyl]-, 2-carbamate, [S]-) in humans.

G S J Mannens, J Hendrickx, C G M Janssen, S Chien, B Van Hoof, T Verhaeghe, M Kao, M F Kelley, I Goris, M Bockx, B Verreet, M Bialer, W Meuldermans

文献索引:Drug Metab. Dispos. 35(4) , 554-65, (2007)

全文:HTML全文

摘要

RWJ-333369 (1,2-ethanediol, [1-2-chlorophenyl]-, 2-carbamate, [S]-; CAS Registry Number 194085-75-1) is a novel neuromodulator in clinical development for the treatment of epilepsy. To study the disposition of RWJ-333369, eight healthy male subjects received a single oral dose of 500 mg of (14)C-RWJ-333369. Urine, feces, and plasma were collected for analysis for up to 1 week after dosing. Radioactivity was mainly excreted in urine (93.8 +/- 6.6%) and much less in feces (2.5 +/- 1.6%). RWJ-333369 was extensively metabolized in humans, since only low amounts of parent drug were excreted in urine (1.7% on average) and feces (trace amounts). The major biotransformation pathways were direct O-glucuronidation (44% of the dose), and hydrolysis of the carbamate ester followed by oxidation to 2-chloromandelic acid, which was subsequently metabolized in parallel to 2-chlorophenyl glycine and 2-chlorobenzoic acid (mean percentage of the dose for the three acids together was 36%). Other routes were chiral inversion followed by O-glucuronidation (11%), and aromatic hydroxylation in combination with sulfate conjugation (5%). In plasma, unchanged drug accounted for 76.5% of the total radioactivity, with the R-enantiomer and the O-glucuronide of the parent drug as the only measurable plasma metabolites. With the use of very sensitive liquid chromatography-tandem mass spectrometry techniques, only traces of aromatic (pre)mercapturic acid conjugates were detected in urine (each <0.3% of the dose), suggesting a low potential for reactive metabolite formation. In conclusion, the disposition of RWJ-333369 in humans is characterized by virtually complete absorption, extensive metabolism, and unchanged drug as the only significant circulating species.


相关化合物

  • 2-氯苄醇

相关文献:

The fate of 2-chlorobenzylidene malononitrile (CS) in rats.

1987-08-01

[Xenobiotica 17(8) , 911-24, (1987)]

更多文献...