Antimicrobial Agents and Chemotherapy 2011-06-01

Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo.

Gilles Brackman, Paul Cos, Louis Maes, Hans J Nelis, Tom Coenye

文献索引:Antimicrob. Agents Chemother. 55 , 2655-2661, (2011)

全文:HTML全文

摘要

Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.


相关化合物

  • 金缕梅单宁

相关文献:

Hamamelitannin from witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells.

2012-01-27

[J. Nat. Prod. 75 , 26-33, (2012)]

Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?

2012-05-01

[J. Antimicrob. Chemother. 67 , 1159-62, (2012)]

Genotoxic and antigenotoxic effects of catechin and tannins from the bark of Hamamelis virginiana L. in metabolically competent, human hepatoma cells (Hep G2) using single cell gel electrophoresis.

2003-05-01

[Phytochemistry 63(2) , 199-207, (2003)]

Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening.

2008-05-01

[Mol. Pharmacol. 73(5) , 1578-86, (2008)]

In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections.

2013-01-01

[J. Antimicrob. Chemother. 68(1) , 126-30, (2013)]

更多文献...