A combined experimental and computational thermodynamic study of difluoronitrobenzene isomers.
Manuel A V Ribeiro da Silva, Manuel J S Monte, Ana I M C Lobo Ferreira, Juliana A S A Oliveira, Álvaro Cimas
文献索引:J. Phys. Chem. B 114(40) , 12914-25, (2010)
全文:HTML全文
摘要
This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.
相关化合物
相关文献:
1995-01-01
[Chem. Biol. Interact. 94(1) , 49-72, (1995)]
1995-11-17
[Chem. Biol. Interact. 98(2) , 97-112, (1995)]
A solid phase traceless synthesis of 2-arylaminobenzimidazoles. Krchnák V, et al.
[Tetrahedron Lett. 42(9) , 1627-30, (2001)]
A solid phase traceless synthesis of quinoxalinones. Krchnák V, et al.
[Tetrahedron Lett. 41(16) , 2835-38, (2000)]
Ring-opening reactions of N-aryl-, 1, 2, 3, 4-tetrahydroisoquinoline derivatives. Andrew HK and Stanforth SP.
[Tetrahedron 48(4) , 743-50, (1992)]