Pharmacogenetics 2000-02-01

Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FM03 gene mutations in a Korean population.

J H Kang, W G Chung, K H Lee, C S Park, J S Kang, I C Shin, H K Roh, M S Dong, H M Baek, Y N Cha

文献索引:Pharmacogenetics 10(1) , 67-78, (2000)

全文:HTML全文

摘要

A non-invasive urine analysis method to determine the in-vivo flavin-containing mono-oxygenase (FMO) activity catalysing N-oxidation of ranitidine (RA) was developed and used to phenotype a Korean population. FMO activity was assessed by the molar concentration ratio of RA and RANO in the bulked 8 h urine. This method was used to determine the FMO phenotypes of 210 Korean volunteers (173 men and 37 women, 110 nonsmokers and 100 smokers). Urinary RA/RANO ratio, representing the metabolic ratio and the reciprocal index of FMO activity, ranged from 5.67-27.20 (4.8-fold difference) and was not different between men and women (P = 0.76) or between smokers and nonsmokers (P = 0.50). The frequencies of RA/RANO ratios were distributed in a trimodal fashion. Among the 210 Korean subjects, 93 (44.3%) were fast metabolizers, 104 (49.5%) were intermediate metabolizers and 13 (6.2%) were slow metabolizers. Subsequently, the relationship between the ranitidine N-oxidation phenotypes and FMO3 genotypes, determined by the presence of two previously identified mutant alleles (Glu158Lys: FMO3/Lys158 and Glu308Gly: FMO3/Gly308 alleles) commonly found in our Korean population was examined. The results showed that subjects who were homozygous and heterozygous for either one or both of the FMO3/Lys158 and FMO3/Gly308 mutant alleles had significantly lower in-vivo FMO activities than those with homozygous wild-type alleles (FMO3/Glu158 and FMO3/Glu308) (P < 0.001, Mann-Whitney U-test). Furthermore, the FMO activities of subjects with either FMO3/Lys158 or FMO3/Gly308 mutant alleles were almost identical to those having both FMO3 mutant alleles (FMO3/Lys158 and FMO3/Gly308). These two mutant alleles located, respectively, at exons 4 and 7 in the FMO3 gene appeared to be strongly linked by cis-configuration in Koreans. Therefore, we concluded that presence of FMO3/Lys158 and FMO3/Gly308 mutant alleles in FMO3 gene is responsible for the low ranitidine N-oxidation (FMO3 activity) in our Korean population.


相关化合物

  • 雷尼替丁-S-氧化物

相关文献:

Qualitative and quantitative analysis of ranitidine and its metabolites by high-performance liquid chromatography-mass spectrometry.

[J. Chromatogr. A. 323(1) , 143-52, (1985)]

Sulphoxidation and sulphation capacity in patients with primary biliary cirrhosis.

1995-05-01

[J. Hepatol. 22(5) , 551-60, (1995)]

Use of post-column fluorescence derivatization to develop a liquid chromatographic assay for ranitidine and its metabolites in biological fluids.

2013-03-01

[J. Chromatogr. B. Biomed. Sci. Appl. 693(2) , 443-9, (1997)]

更多文献...