Thomas-C. Jagau, Ksenia B. Bravaya, Anna I. Krylov
文献索引:10.1146/annurev-physchem-052516-050622
全文:HTML全文
Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.
The Importance of Being Inconsistent
2017-05-02 [10.1146/annurev-physchem-052516-044957] |
Roaming: A Phase Space Perspective
2017-05-02 [10.1146/annurev-physchem-052516-050613] |
Ultrafast X-Ray Crystallography and Liquidography
2017-05-02 [10.1146/annurev-physchem-052516-050851] |
The Hydrated Electron
2017-05-02 [10.1146/annurev-physchem-052516-050816] |
Random-Phase Approximation Methods
2017-05-02 [10.1146/annurev-physchem-040215-112308] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved