John M. Alred, Ksenia V. Bets, Yu Xie, Boris I. Yakobson
文献索引:10.1016/j.compscitech.2018.03.035
全文:HTML全文
Mechanical strengthening of composite materials that include carbon nanotubes (CNT) requires strong inter-bonding to achieve significant CNT-CNT or CNT-matrix load transfer. The same principle is applicable to the improvement of CNT bundles and calls for covalent crosslinks between individual tubes. In this work, sulfur crosslinks are studied using a combination of density functional theory (DFT) and classical molecular dynamics (MD). Atomic chains of at least two sulfur atoms or more are shown to be stable between both zigzag and armchair CNTs. All types of crosslinked CNTs exhibit significantly improved load transfer. Moreover, sulfur crosslinks show evidence of a cooperative self-healing mechanism allowing for links to rebond once broken leading to sustained load transfer under shear loading. Additionally, a general approach for utilizing machine learning for assessing the ground state electron density is developed and applied to these sulfur crosslinked CNTs.
Microstructure evolution and self-assembling of CNT networks...
2018-04-04 [10.1016/j.compscitech.2018.04.003] |
Synergetic enhancement of thermal conductivity by constructi...
2018-04-03 [10.1016/j.compscitech.2018.03.016] |
Plasma poly(acrylic acid) compatibilized hydroxyapatite-poly...
2018-04-03 [10.1016/j.compscitech.2018.04.001] |
Study on synergistic toughening of polypropylene with high-d...
2018-04-03 [10.1016/j.compscitech.2018.03.044] |
Dielectric response of nano aluminium tri-hydrate filled sil...
2018-04-03 [10.1016/j.compscitech.2018.04.002] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved