Denis Öhl; Jan Clausmeyer; Stefan Barwe; Alexander Botz; Wolfgang Schuhmann
文献索引:10.1002/celc.201800094
全文:HTML全文
The activity towards the oxygen reduction reaction (ORR) of single silver nanoparticles (AgNP) was quantified by using AgNP impacts on dual‐bore carbon nanoelectrodes in highly alkaline media. We found suitable conditions for the particles to adhere sufficiently stably for detailed electrochemical characterization of a single particle. The special electrode design opens the possibility to dose gaseous oxygen to the nanoparticle under study. Deactivation of the catalytic activity of the AgNP upon excessive exposure to oxygen as well as the recovery of catalytic activity under reducing conditions is presumably attributed to hydrogen evolution at the applied low potentials. The proposed approach allows mechanistic parameters for the ORR to be extracted at a single AgNP in highly alkaline media in the absence of any binder materials and under exclusion of averaging ensemble effects.
|
Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced E...
2018-04-17 [10.1002/celc.201701110] |
|
Artificial Interface Derived from Diphenyl Ether Additive fo...
2018-04-16 [10.1002/celc.201800011] |
|
Hydrogen Bonding Effects on the Reversible Reorganization of...
2018-04-14 [10.1002/celc.201800148] |
|
In situ Synthesis of V2O3‐Intercalated N‐doped Graphene Nano...
2018-04-06 [10.1002/celc.201800213] |
|
Redox‐Active Copper‐Benzotriazole Stacked Multiwalled Carbon...
2018-04-06 [10.1002/celc.201800110] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved