Emmanuel Bertrand, Christophe Pasquier, David Duchez, Sebastien Girard, Agnès Pons, Pierre Bonnet, Catherine Creuly, Claude-Gilles Dussap
文献索引:10.1016/j.biortech.2018.03.130
全文:HTML全文
Studies of the effects of electromagnetic waves on Saccharomyces cerevisiae emphasize the need to develop instrumented experimental systems ensuring a characterization of the exposition level to enable unambiguous assessment of their potential effects on living organisms. A bioreactor constituted with two separate compartments has been designed. The main element (75% of total volume) supporting all measurement and control systems (temperature, pH, agitation, and aeration) is placed outside the exposure room whereas the secondary element is exposed to irradiation. Measurements of the medium dielectric properties allow the determination of the electromagnetic field at any point inside the irradiated part of the reactor and are consistent with numerical simulations. In these conditions, the growth rate of Saccharomyces cerevisiae and the ethanol yield in aerobic conditions are not significantly modified when submitted to an electromagnetic field of 900 and 2400 MHz with an average exposition of 6.11 V.m-1 and 3.44 V.m-1 respectively.
Sustainable green pretreatment approach to biomass-to-energy...
2018-04-12 [10.1016/j.biortech.2018.04.039] |
Adsorption removal of natural organic matters in waters usin...
2018-04-07 [10.1016/j.biortech.2018.04.016] |
Biodegradation of acrylamide by a novel isolate, Cupriavidus...
2018-04-06 [10.1016/j.biortech.2018.04.012] |
Combined bioaugmentation with anaerobic ruminal fungi and fe...
2018-04-03 [10.1016/j.biortech.2018.03.128] |
Biocatalytic strategies for the production of high fructose ...
2018-04-03 [10.1016/j.biortech.2018.03.127] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved