Hartmut Beck; Mario Jeske; Kai Thede; Friederike Stoll; Ingo Flamme; Metin Akbaba; Jens‐Kerim Ergüden; Gunter Karig; Jörg Keldenich; Felix Oehme; Hans‐Christian Militzer; Ingo V. Hartung; Uwe Thuss
文献索引:10.1002/cmdc.201700783
全文:HTML全文
Small‐molecule inhibitors of hypoxia‐inducible factor prolyl hydroxylases (HIF‐PHs) are currently under clinical development as novel treatment options for chronic kidney disease (CKD) associated anemia. Inhibition of HIF‐PH mimics hypoxia and leads to increased erythropoietin (EPO) expression and subsequently increased erythropoiesis. Herein we describe the discovery, synthesis, structure–activity relationship (SAR), and proposed binding mode of novel 2,4‐diheteroaryl‐1,2‐dihydro‐3H‐pyrazol‐3‐ones as orally bioavailable HIF‐PH inhibitors for the treatment of anemia. High‐throughput screening of our corporate compound library identified BAY‐908 as a promising hit. The lead optimization program then resulted in the identification of molidustat (BAY 85‐3934), a novel small‐molecule oral HIF‐PH inhibitor. Molidustat is currently being investigated in clinical phase III trials as molidustat sodium for the treatment of anemia in patients with CKD.
Identifying Small‐Molecule Binding Sites for Epigenetic Prot...
2018-04-17 [10.1002/cmdc.201800030] |
Fluorinated GluN2B Receptor Antagonists with a 3‐Benzazepine...
2018-04-17 [10.1002/cmdc.201700819] |
Synthesis, Pharmacological Evaluation, and Docking Studies o...
2018-04-16 [10.1002/cmdc.201800152] |
Discovery of Benzimidazole–Quinolone Hybrids as New Cleaving...
2018-04-16 [10.1002/cmdc.201700739] |
Transthyretin Mimetics as Anti‐β‐Amyloid Agents: A Compariso...
2018-04-16 [10.1002/cmdc.201800031] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved