前往化源商城

Cell Death and Disease 2015-01-01

Loss of anchorage primarily induces non-apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling.

F Ishikawa, K Ushida, K Mori, M Shibanuma

文献索引:Cell Death Dis. 6 , e1619, (2015)

全文:HTML全文

摘要

Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.

相关化合物

结构式 名称/CAS号 全部文献
氯化钠 结构式 氯化钠
CAS:7647-14-5
2-氨基乙醇 结构式 2-氨基乙醇
CAS:141-43-5
无水氯化钙 结构式 无水氯化钙
CAS:10043-52-4
星孢菌素 结构式 星孢菌素
CAS:62996-74-1
氯化钠-35cl 结构式 氯化钠-35cl
CAS:20510-55-8
氢化可的松 结构式 氢化可的松
CAS:50-23-7
二水氯化钙 结构式 二水氯化钙
CAS:10035-04-8
桃叶珊瑚苷; 杜仲苷 结构式 桃叶珊瑚苷; 杜仲苷
CAS:479-98-1
4-(4-甲基哌嗪-1-基)-7-(三氟甲基)吡咯并[1,2-a]喹喔啉马来酸盐 结构式 4-(4-甲基哌嗪-1-基)-7-(三氟甲基)吡咯并[1,2-a]喹喔啉马来酸盐
CAS:1350965-83-1
5(6)-羧基荧光素琥珀酰亚胺酯 结构式 5(6)-羧基荧光素琥珀酰亚胺酯
CAS:117548-22-8