Aitor Ochoa, Aitor Arregi, Maider Amutio, Ana G. Gayubo, Martin Olazar, Javier Bilbao, Pedro Castaño
Index: 10.1016/j.apcatb.2018.04.002
Full Text: HTML
The valorization of biomass (pine wood) for hydrogen production has been studied in a two-step process, comprising pyrolysis and subsequent steam reforming of the volatiles produced in the first step. This work focuses on the deactivation of the Ni commercial catalyst used in the second step. Pyrolysis of biomass has been performed in a conical spouted bed reactor at 500 °C, and the in-line catalytic steam reforming of the pyrolysis volatiles, in a fluidized bed reactor at 600 °C. Deactivated catalyst samples were recovered at different values of time on stream, and analyzed by means of XRD, N2 adsorption-desorption, SEM and TEM microscopies, TPO, Raman and FTIR spectroscopies. The results show that the deactivation is mainly due to the encapsulation of Ni particles by coke, together with Ni sintering, to a lesser extent (from a Ni particle size of 25 nm in the reduced fresh catalyst, to 39 nm at 100 min). The former is ascribed to the condensation of oxygenates (particularly phenols), and the latter is inevitable within the current conditions. As the fraction of uncovered Ni particles decreases with time on stream, the deposition of encapsulating coke is slowed down (from a formation rate of 0.30 mgcoke gcatalyst-1 min-1 to 0.20 mgcoke gcatalyst-1 min-1, at 0-50 min and 50-100 min on stream, respectively), promoting the deposition of coke on the catalyst support (with a formation rate of 1.04 mgcoke gcatalyst-1 min-1 at 50-100 min on stream), with a more carbonized structure and formed through the thermal decomposition of phenols in the reaction medium.
In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S ...
2018-04-09 [10.1016/j.apcatb.2018.04.013] |
Shape selectivity vapor-phase conversion of lignin-derived 4...
2018-04-08 [10.1016/j.apcatb.2018.04.001] |
Fe3S4/Fe7S8-Promoted Degradation of Phenol via Heterogeneous...
2018-04-06 [10.1016/j.apcatb.2018.03.110] |
In situ constructing interfacial contact MoS2/ZnIn2S4 hetero...
2018-04-04 [10.1016/j.apcatb.2018.04.006] |
Fabrication of BiOI/graphene Hydrogel/FTO Photoelectrode wit...
2018-04-03 [10.1016/j.apcatb.2018.04.004] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved