Archives of Biochemistry and Biophysics 2014-01-01

Potassium channel openers prevent palmitate-induced insulin resistance in C2C12 myotubes.

Dorota Dymkowska, Beata Drabarek, Justyna Jakubczyk, Sylwia Wojciechowska, Krzysztof Zabłocki

Index: Arch. Biochem. Biophys. 541 , 47-52, (2014)

Full Text: HTML

Abstract

Insulin resistance (IR) of muscle cells is an early symptom of type 2 diabetes. It often results from excessive lipid accumulation in muscle fibers which under in vitro experimental conditions may be induced by incubation of muscle cells with palmitate. IR is manifested as a reduced response of cells to insulin expressed by lowered Akt kinase phosphorylation and decreased insulin-dependent glucose uptake. Stimulation of mitochondrial oxidative metabolism by mild dissipation of the mitochondrial potential is thought to increase fatty acid utilization and thereby prevent insulin resistance. Here it is shown that nicorandil and NS1619, which are openers of two different mitochondrial potassium channels, protect C2C12 myotubes from palmitate-induced insulin resistance. Preincubation of myotubes with 5-hydroxydecanoate abolishes the protective effect of nicorandil. The efficient concentrations of both openers are far below those commonly applied for cytoprotection. This is probably why their effects on the mitochondrial energy metabolism are small. These data suggest that opening of mitochondrial potassium channels could be a promising approach in prevention and therapy of insulin resistance related to dyslipidemia and obesity.Copyright © 2013 Elsevier Inc. All rights reserved.

Related Compounds

Structure Name/CAS No. Articles
Nicorandil Structure Nicorandil
CAS:65141-46-0
NS-1619 Structure NS-1619
CAS:153587-01-0