PLoS ONE 2012-01-01

Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism.

Céline Douarre, Carole Sourbier, Ilaria Dalla Rosa, Benu Brata Das, Christophe E Redon, Hongliang Zhang, Len Neckers, Yves Pommier

Index: PLoS ONE 7 , e41094, (2012)

Full Text: HTML

Abstract

Mitochondria contain their own DNA genome (mtDNA), as well as specific DNA replication and protein synthesis machineries. Relaxation of the circular, double-stranded mtDNA relies on the presence of topoisomerase activity. Three different topoisomerases have been identified in mitochondria: Top1mt, Top3α and a truncated form of Top2β.The present study shows the importance of Top1mt in mitochondrial homeostasis. Here we show that Top1mt-/- murine embryonic fibroblasts (MEF) exhibit dysfunctional mitochondrial respiration, which leads decreased ATP production and compensation by increased glycolysis and fatty acid oxidation. ROS production in Top1mt-/- MEF cells is involved in nuclear DNA damage and induction of autophagy. Lack of Top1mt also triggers oxidative stress and DNA damage associated with lipid peroxidation and mitophagy in Top1mt-/- mice.Together, our data implicate Top1mt for mitochondrial integrity and energy metabolism. The compensation mechanism described here contributes to the survival of Top1mt-/- cells and mice despite alterations of mitochondrial functions and metabolism. Therefore, this study supports a novel model for cellular adaptation to mitochondrial damage.

Related Compounds

Structure Name/CAS No. Articles
C75 Structure C75
CAS:218137-86-1