Solid State Nuclear Magnetic Resonance 1994-06-01

Cross-polarization dynamics and spin diffusion in some aromatic compounds.

J Hirschinger, M Hervé

Index: Solid State Nucl. Magn. Reson. 3(3) , 121-35, (1994)

Full Text: HTML

Abstract

The inversion-recovery cross-polarization (IRCP) magic-angle spinning experiment has been applied to study the 13C-1H cross-polarization dynamics of protonated aromatic carbons in ferrocene, 5,6-dimethoxyindole (DMI) and some indole derivatives. Using the 13C-detected proton spin diffusion (SD) experiment recently developed by Zhang et al. [Solid State Nucl. Magn. Reson., 1 (1992) 313], the slow decaying or incoherent stage of the IRCP experiment is shown to be controlled by the spin diffusion process at the directly bound proton. Moreover, a simple phenomenological model treating spin diffusion as a relaxation process provides an excellent agreement with both the IRCP and SD experimental data for all the different C-H pairs of DMI and its derivatives. The resulting time constants of the non-exponential spin diffusion decays are related to the local intra- and intermolecular network of dipolar interactions. This model is nevertheless found to be inadequate for ferrocene because intramolecular spin diffusion then has an inhomogeneous character.

Related Compounds

Structure Name/CAS No. Articles
5,6-Dimethoxyindole Structure 5,6-Dimethoxyindole
CAS:14430-23-0