American Journal of Physiology -- Legacy Content 1999-10-01

Persistence of external chloride and DIDS binding after chemical modification of Glu-681 in human band 3.

S Bahar, C T Gunter, C Wu, S D Kennedy, P A Knauf

Index: Am. J. Physiol. 277(4 Pt 1) , C791-9, (1999)

Full Text: HTML

Abstract

Although its primary function is monovalent anion exchange, the band 3 protein also cotransports divalent anions together with protons at low pH. The putative proton binding site, Glu-681 in human erythrocyte band 3, is conserved throughout the anion exchanger family (AE family). To determine whether or not the monovalent anion binding site is located near Glu-681, we modified this residue with Woodward's reagent K (N-ethyl-5-phenylisoxazolium-3'-sulfonate; WRK). Measurements of Cl(-) binding by (35)Cl-NMR show that external Cl(-) binds to band 3 even when Cl(-) transport is inhibited approximately 95% by WRK modification of Glu-681. This indicates that the external Cl(-) binding site is not located near Glu-681 and thus presumably is distant from the proton binding site. DIDS inhibits Cl(-) binding even when WRK is bound to Glu-681, indicating that the DIDS binding site is also distant from Glu-681. Our data suggest that the DIDS site and probably also the externally facing Cl(-) transport site are located nearer to the external surface of the membrane than Glu-681.


Related Compounds

  • n-ethyl-5-phenylis...

Related Articles:

[Synthesis of electroconductive polyaniline using immobilized laccase].

2009-01-01

[Prikl. Biokhim. Mikrobiol. 45(1) , 33-7, (2009)]

The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.

2003-02-18

[Biochemistry 42(6) , 1589-602, (2003)]

Effect of protein-modifying reagents on ecto-apyrase from rat brain.

2000-01-01

[Int. J. Biochem. Cell Biol. 32(1) , 105-13, (2000)]

Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups.

1996-02-01

[Protein Sci. 5(2) , 382-90, (1996)]

Acidic residue modifications restore chaperone activity of β-casein interacting with lysozyme.

2011-11-01

[Int. J. Biol. Macromol. 49(4) , 616-21, (2011)]

More Articles...