Physical Chemistry Chemical Physics 2006-11-28

The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal.

Margaret P O'Connor, John C Wenger, Abdelwahid Mellouki, Klaus Wirtz, Amalia Muñoz

Index: Phys. Chem. Chem. Phys. 8(44) , 5236-46, (2006)

Full Text: HTML

Abstract

The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. E-2-Hexenal and E,E-2,4-hexadienal were found to undergo rapid isomerization to produce Z-2-hexenal and a ketene-type compound (probably E-hexa-1,3-dien-1-one), respectively. Both isomerization processes were reversible with formation of the reactant slightly favoured. Values of j(E-2-hexenal)/j(NO(2)) = (1.80 +/- 0.18) x 10(-2) and j(E,E-2,4-hexadienal)/j(NO(2)) = (2.60 +/- 0.26) x 10(-2) were determined. The gas phase UV absorption cross-sections of E-2-hexenal and E,E-2,4-hexadienal were measured and used to derive effective quantum yields for photoisomerization of 0.36 +/- 0.04 for E-2-hexenal and 0.23 +/- 0.03 for E,E-2,4-hexadienal. Although photolysis appears to be an important atmospheric degradation pathway for E-2-hexenal and E,E-2,4-hexadienal, the reversible nature of the photolytic process means that gas phase reactions with OH and NO(3) radicals are ultimately responsible for the atmospheric removal of these compounds. Atmospheric photolysis of Z-3-hexenal produced CO, with a molar yield of 0.34 +/- 0.03, and 2-pentenal via a Norrish type I process. A value of j(Z-3-hexenal)/j(NO(2)) = (0.4 +/- 0.04) x 10(-2) was determined. The results suggest that photolysis is likely to be a minor atmospheric removal process for Z-3-hexenal.


Related Compounds

  • 2,4-Hexadienal

Related Articles:

Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production.

2015-01-01

[Molecules 20 , 10980-1016, (2015)]

Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

2015-09-02

[J. Agric. Food Chem. 63 , 7499-510, (2015)]

Characterization of Taenia solium cysticerci microsomal glutathione S-transferase activity.

2007-10-01

[Parasitol. Res. 101(5) , 1373-81, (2007)]

NTP toxicology and carcinogensis Studies of 2,4-hexadienal (89% trans,trans isomer, CAS No. 142-83-6; 11% cis,trans isomer) (Gavage Studies).

2003-10-01

[Natl. Toxicol. Program Tech. Rep. Ser. (509) , 1-290, (2003)]

Cell spreading on collagen that has been exposed to reactive aldehydes.

1992-11-01

[Biochem. Soc. Trans. 20(4) , 369S, (1992)]

More Articles...