Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis.
Virginia Gomez, Joseph C Bear, Paul D McNaughter, James D McGettrick, Trystan Watson, Cecile Charbonneau, Paul O'Brien, Andrew R Barron, Charles W Dunnill
文献索引:Nanoscale 7 , 17735-44, (2015)
全文:HTML全文
摘要
Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with "Janus-like" characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.
相关化合物
相关文献:
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
2014-01-01
[PLoS ONE 9(12) , e116152, (2014)]
2015-05-01
[Biomaterials 51 , 1-11, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]