Food Chemistry 2015-05-01

Simple analytical strategy for MALDI-TOF-MS and nanoUPLC-MS/MS: quantitating curcumin in food condiments and dietary supplements and screening of acrylamide-induced ROS protein indicators reduced by curcumin.

Yu-Shu Huang, Tusty-Jiuan Hsieh, Chi-Yu Lu

文献索引:Food Chem. 174 , 571-6, (2014)

全文:HTML全文

摘要

Curcumin is the major active ingredient of turmeric and is widely used as a preservative, flavouring and colouring agent. Curcumin is a potent substance with several functions, including antioxidant, antitumor, anti-inflammatory, antimicrobial, antiparasitic, antimutagenic, chemopreventive and chemotherapeutic activities. Matrix-assisted laser desorption/ionisation coupled with time-of-flight mass spectrometry (MALDI-TOF-MS) has been used to analyse various molecules (including natural antioxidants). This study established an expeditious method that couples MALDI-TOF-MS with a simple dilution method to quantify curcumin in food condiments and dietary supplements. The linear range of curcumin detection ranged from 1 to 100 μg/mL. In further experiments, liver cells were treated with curcumin after exposure to acrylamide. Nano ultra performance liquid chromatographic system (nanoUPLC) coupled with tandem mass spectrometry (MS/MS) was used to evaluate the potential proteins and protein modifications induced by acrylamide. The results indicate that curcumin reduces the effects of reactive oxygen species induced by acrylamide.Copyright © 2014 Elsevier Ltd. All rights reserved.


相关化合物

  • 姜黄素
  • 2,5-二羟基苯甲酸
  • 甲酸
  • 氧氟沙星
  • 乙腈
  • 碘代乙酰胺
  • 碳酸氢铵
  • 三氟乙酸(TFA)
  • 二甲基亚砜
  • 丙烯酰胺

相关文献:

Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

2014-11-01

[J. Pharm. Sci. 103(11) , 3764-71, (2014)]

Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site.

2015-03-14

[Org. Biomol. Chem. 13(10) , 3040-7, (2015)]

An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.

2014-11-01

[IUBMB Life 66(11) , 780-5, (2015)]

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

2014-06-01

[Invest. Ophthalmol. Vis. Sci. 55(6) , 3423-31, (2014)]

Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

2015-03-01

[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]

更多文献...