A highly efficient polysulfide mediator for lithium-sulfur batteries.
Xiao Liang, Connor Hart, Quan Pang, Arnd Garsuch, Thomas Weiss, Linda F Nazar
文献索引:Nat. Commun. 6 , 5682, (2015)
全文:HTML全文
摘要
The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host--manganese dioxide nanosheets serve as the prototype--reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind 'higher' polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g(-1) at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.
相关化合物
相关文献:
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-15
[Biochem. J. 467(2) , 345-52, (2015)]
2015-05-01
[Biochem. J. 467(3) , 425-38, (2015)]
2015-04-01
[J. Virol. 89(8) , 4421-33, (2015)]
2015-01-01
[Nat. Commun. 6 , 5853, (2015)]