Food and Chemical Toxicology 2008-02-01

Effect of diisopropanolamine upon choline uptake and phospholipid synthesis in Chinese hamster ovary cells.

W T Stott, K M Kleinert

文献索引:Food Chem. Toxicol. 46(2) , 761-6, (2008)

全文:HTML全文

摘要

Aminoalcohols differ in mammalian toxicity at least in part based upon their ability to alter the metabolism of phospholipids and to cause depletion of the essential nutrient choline in animals. This study examined the incorporation of diisopropanolamine (DIPA) into phospholipids (PLs) and effects of DIPA upon choline uptake and phospholipid synthesis in Chinese hamster ovary (CHO) cells. Results were compared to those of a related secondary alcohol amine, diethanolamine (DEA), whose systemic toxicity is closely associated with its metabolic incorporation into PLs and depletion of choline pools. DIPA caused a dose-related inhibition of (3)H-choline uptake by CHO cells that was approximately 3-4 fold less potent, based upon an IC50, than that reported for DEA. DIPA, in contrast to DEA, did not cause changes in the synthesis rates of (33)P-phosphatidylethanolamine, (33)P-phosphatidylcholine or (33)P-sphingomyelin at either non-toxic or moderately toxic concentrations. Only approximately 0.004%, of administered (14)C-DIPA was metabolically incorporated into PLs, over 30-fold less than the incorporation of (14)C-DEA under similar conditions. Overall, these data and previous pharmacokinetic and toxicity data obtained in vivo suggests that DIPA is distinct from DEA and lacks significant choline and PL metabolism related toxicity in animals.


相关化合物

  • 二异丙醇胺

相关文献:

Low expression of spindle checkpoint protein, Cenp-E, causes numerical chromosomal abnormalities in HepG-2 human hepatoma cells.

2016-01-01

[Oncol. Lett. 10 , 2699-2704, (2016)]

Triple allergic contact sensitivities due to ferbinac, crotamiton and diisopropanolamine.

2003-11-01

[Contact Dermatitis 49(5) , 261-3, (2003)]

Contact dermatitis due to diisopropanolamine.

1989-07-01

[Contact Dermatitis 21(1) , 56, (1989)]

Carcinogenic activity of endogenously synthesized N-nitrosobis(2-hydroxypropyl)amine in rats administered bis(2-hydroxypropyl)amine and sodium nitrite.

1989-09-01

[Carcinogenesis 10(9) , 1607-11, (1989)]

Microbial mineralization of diisopropanolamine.

1999-05-01

[Can. J. Microbiol. 45(5) , 377-88, (1999)]

更多文献...