RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.
Audrey N Jajosky, James E Coad, Jeffrey A Vos, Karen H Martin, Jamie R Senft, Sharon L Wenger, Laura F Gibson
文献索引:Stem Cells Transl. Med. 3(7) , 836-48, (2014)
全文:HTML全文
摘要
Despite initial response to therapy, most acute myeloid leukemia (AML) patients relapse. To eliminate relapse-causing leukemic stem/progenitor cells (LPCs), patient-specific immune therapies may be required. In vitro cellular engineering may require increasing the "stemness" or immunogenicity of tumor cells and activating or restoring cancer-impaired immune-effector and antigen-presenting cells. Leukapheresis samples provide the cells needed to engineer therapies: LPCs to be targeted, normal hematopoietic stem cells to be spared, and cancer-impaired immune cells to be repaired and activated. This study sought to advance development of LPC-targeted therapies by exploring nongenetic ways to slow the decay and to increase the immunogenicity of primary CD34(+) AML cells. CD34(+) AML cells generally displayed more colony-forming and aldehyde dehydrogenase activity than CD34(-) AML cells. Along with exposure to bone marrow stromal cells and low (1%-5%) oxygen, culture with RepSox (a reprogramming tool and inhibitor of transforming growth factor-β receptor 1) consistently slowed decline of CD34(+) AML and myelodysplastic syndrome (MDS) cells. RepSox-treated AML cells displayed higher CD34, CXCL12, and MYC mRNA levels than dimethyl sulfoxide-treated controls. RepSox also accelerated loss of T cell immunoglobulin mucin-3 (Tim-3), an immune checkpoint receptor that impairs antitumor immunity, from the surface of AML and MDS cells. Our results suggest RepSox may reduce Tim-3 expression by inhibiting transforming growth factor-β signaling and slow decay of CD34(+) AML cells by increasing CXCL12 and MYC, two factors that inhibit AML cell differentiation. By prolonging survival of CD34(+) AML cells and reducing Tim-3, RepSox may promote in vitro immune cell activation and advance development of LPC-targeted therapies. ©AlphaMed Press.
相关化合物
相关文献:
2015-01-01
[Nat. Commun. 6 , 5794, (2015)]
2015-05-01
[Biomaterials 51 , 1-11, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]
2015-04-01
[Dev. Dyn. 244(4) , 591-606, (2015)]