10,10'-二溴-9,9'-联二蒽结构式
|
常用名 | 10,10'-二溴-9,9'-联二蒽 | 英文名 | 10,10-Dibromo-9,9-bianthryl |
---|---|---|---|---|
CAS号 | 121848-75-7 | 分子量 | 512.235 | |
密度 | 1.6±0.1 g/cm3 | 沸点 | 599.0±45.0 °C at 760 mmHg | |
分子式 | C28H16Br2 | 熔点 | 357-359ºC | |
MSDS | 美版 | 闪点 | 361.4±28.0 °C | |
符号 |
GHS07 |
信号词 | Warning |
中文名 | 10,10’-二溴-9,9’-联二蒽 |
---|---|
英文名 | 9-bromo-10-(10-bromoanthracen-9-yl)anthracene |
中文别名 | 9,10-二溴-9‘-10'-联蒽 | 10,10'-二溴-9,9'-联二蒽 | 10-溴-9-苯基蒽 | 10,10'-二溴-9,9'-联蒽 | 10,10'-二溴-9,9'-联蒽(OLED材料中间体) |
英文别名 | 更多 |
密度 | 1.6±0.1 g/cm3 |
---|---|
沸点 | 599.0±45.0 °C at 760 mmHg |
熔点 | 357-359ºC |
分子式 | C28H16Br2 |
分子量 | 512.235 |
闪点 | 361.4±28.0 °C |
精确质量 | 509.961853 |
LogP | 10.44 |
外观性状 | 固体;White to Yellow to Green powder to crystal |
蒸汽压 | 0.0±1.6 mmHg at 25°C |
折射率 | 1.794 |
储存条件 | 室温,干燥 |
符号 |
GHS07 |
---|---|
信号词 | Warning |
危害声明 | H315-H319-H335 |
警示性声明 | P280-P304 + P340 + P312-P305 + P351 + P338-P337 + P313 |
危险品运输编码 | NONH for all modes of transport |
~40% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Dar, Bashir Ahmad; Singh, Snehil; Pandey, Nalini; Singh; Sharma, Priti; Lazar, Anish; Sharma, Meena; Vishwakarma, Ram A.; Singh, Baldev Applied Catalysis A: General, 2014 , vol. 470, p. 232 - 238 |
~94% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Baumgarten, Martin; Yueksel, Timucin Physical Chemistry Chemical Physics, 1999 , vol. 1, # 8 p. 1699 - 1706 |
~13% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Tetrahedron Letters, , vol. 51, # 19 p. 2655 - 2656 |
~14% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Tetrahedron Letters, , vol. 51, # 19 p. 2655 - 2656 |
~44% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Herges, Rainer; Neumann, Helfried Liebigs Annalen, 1995 , # 7 p. 1283 - 1290 |
~% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Journal of Organic Chemistry, , vol. 78, # 20 p. 10383 - 10394 |
~% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Journal of Organic Chemistry, , vol. 78, # 20 p. 10383 - 10394 |
~% 10,10'-二溴-9,9'-联二蒽 121848-75-7 |
文献:Journal of Materials Chemistry C, , vol. 1, # 48 p. 8117 - 8127 |
10,10'-二溴-9,9'-联二蒽上游产品 7 | |
---|---|
10,10'-二溴-9,9'-联二蒽下游产品 2 | |
Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
Nat. Nanotechnol. 10(2) , 156-60, (2015) Bandgap engineering is used to create semiconductor heterostructure devices that perform processes such as resonant tunnelling and solar energy conversion. However, the performance of such devices deg... |
|
Bottom-up synthesis of chemically precise graphene nanoribbons.
Chem. Rec. 15(1) , 295-309, (2015) In this article, we describe our chemical approach, developed over the course of a decade, towards the bottom-up synthesis of structurally well-defined graphene nanoribbons (GNRs). GNR synthesis can b... |
|
Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface. Lorenzo M, et al.
J. Phys. Chem. C Nanomater. Interfaces 119(5) , 2427-2437, (2015)
|
10,10'-bromo-9,9'-bianthryl |
9,9'-Bianthracene,10,10'-dibromo |
9,9'-Bianthracene, 10,10'-dibromo- |
10,10-Dibromo-9,9-bianthryl |
10,10'-Dibromo-9,9'-bianthracene |
10,10'-dibromo-9,9'-bianthracenyl |