Journal of Immunology 2014-12-15

The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase.

Jordan L Woehl, Daphne A C Stapels, Brandon L Garcia, Kasra X Ramyar, Andrew Keightley, Maartje Ruyken, Maria Syriga, Georgia Sfyroera, Alexander B Weber, Michal Zolkiewski, Daniel Ricklin, John D Lambris, Suzan H M Rooijakkers, Brian V Geisbrecht

Index: J. Immunol. 193(12) , 6161-71, (2014)

Full Text: HTML

Abstract

The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion. Copyright © 2014 by The American Association of Immunologists, Inc.

Related Compounds

Structure Name/CAS No. Articles
Sulfuric acid Structure Sulfuric acid
CAS:7664-93-9
Magnesium choride Structure Magnesium choride
CAS:7786-30-3
Calcium chloride Structure Calcium chloride
CAS:10043-52-4
EGTA Structure EGTA
CAS:67-42-5
calcium chloride dihydrate Structure calcium chloride dihydrate
CAS:10035-04-8
Digoxigenin Structure Digoxigenin
CAS:1672-46-4
N-Hydroxysuccinimide Structure N-Hydroxysuccinimide
CAS:6066-82-6