Mibefradil

Modify Date: 2025-08-21 21:54:09

Mibefradil Structure
Mibefradil structure
Common Name Mibefradil
CAS Number 116644-53-2 Molecular Weight 495.62900
Density 1.18g/cm3 Boiling Point 647.6ºC at 760mmHg
Molecular Formula C29H38FN3O3 Melting Point N/A
MSDS N/A Flash Point 345.5ºC

 Use of Mibefradil


Mibefradil is a calcium channel blocker with moderate selectivity for T-type Ca2+ channels displaying IC50s of 2.7 μM and 18.6 μM for T-type and L-type currents, respectively.

 Names

Name [(1S,2S)-2-[2-[3-(1H-benzimidazol-2-yl)propyl-methylamino]ethyl]-6-fluoro-1-propan-2-yl-3,4-dihydro-1H-naphthalen-2-yl] 2-methoxyacetate
Synonym More Synonyms

 Mibefradil Biological Activity

Description Mibefradil is a calcium channel blocker with moderate selectivity for T-type Ca2+ channels displaying IC50s of 2.7 μM and 18.6 μM for T-type and L-type currents, respectively.
Related Catalog
Target

IC50: 2.7 μM (T-type calcium channel), 18.6 μM (L-type calcium channel)[1]

In Vitro Mibefradil inhibits reversibly the T- and L-type currents with IC50 values of 2.7 and 18.6 μM, respectively. The inhibition of the L-type current is voltage-dependent, whereas that of the T-type current is not. Ro 40-5967 blocks T-type current already at a holding potential of -100 mV[1] At a higher concentration (20 µM), Mibefradil reduces the amplitude of excitatory junction potentials (by 37±10 %), slows the rate of repolarisation (by 44±16 %) and causes a significant membrane potential depolarisation (from −83±1 mV to −71±5 mV). At a higher Mibefradil concentration (20 µM) there is significant membrane potential depolarisation and a slowing of repolarisation. These actions of Mibefradil are consistent with K+ channel inhibition, which has been shown to occur in human myoblasts and other cells[2].
In Vivo The hearing thresholds of the 24-26 week old C57BL/6J mice differed following the 4-week treatment period. The hearing threshold at 24 kHz is significantly decreased in the Mibefradil-treated and benidipine-treated groups compared with the saline-treated group (P<0.05)[3]. Compared with the saline-treated group, rats receiving Mibefradil or Ethosuximide show significant lower CaV3.2 expression in the spinal cord and DRG[4].
Animal Admin Mice[3] A total of 30 male C57BL/6J mice (age, 6-8 weeks) are randomized into three groups for the detection of three calcium channel receptor subunits α1G, α1H and α1I, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, a further 30 C57BL/6J male mice (age, 24-26 weeks) are allocated at random into three treatment groups: Saline, Mibefradil and benidipine. Each group is subjected to auditory brainstem recording (ABR) and distortion product otoacoustic emission (DPOAE) tests following treatment. Mibefradil and benidipine are dissolved in physiological saline solution. A preliminary experiment led to the selection of dosages of 30 mg/kg/day Mibefradil and 10 mg/kg/day Benidipine. The drugs are administered to the mice by gavage for four consecutive weeks. Rats[4] Male Sprague-Dawley rats (200-250 g) are used for right L5/6 SNL to induce neuropathic pain. Intrathecal infusion of saline or TCC blockers [Mibefradil (0.7 μg/h) or Ethosuximide (60 μg/h)] is started after surgery for 7 days. Fluorescent immunohistochemistry and Western blotting are used to determine the expression pattern and protein level of CaV3.2. Hematoxylin-eosin and toluidine blue staining are used to evaluate the neurotoxicity of tested agents.
References

[1]. Mehrke G, et al. The Ca(++)-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels. J Pharmacol Exp Ther. 1994 Dec;271(3):1483-8.

[2]. Brain KL, et al. The sources and sequestration of Ca(2+) contributing to neuroeffector Ca(2+) transients in the mouse vas deferens. J Physiol. 2003 Dec 1;553(Pt 2):627-35.

[3]. Yu YF, et al. Protection of the cochlear hair cells in adult C57BL/6J mice by T-type calcium channel blockers. Exp Ther Med. 2016 Mar;11(3):1039-1044.

[4]. Shiue SJ, et al. Chronic intrathecal infusion of T-type calcium channel blockers attenuates CaV3.2 upregulation in nerve-ligated rats. Acta Anaesthesiol Taiwan. 2016 Oct 17. pii: S1875-4597(16)30071-6.

 Chemical & Physical Properties

Density 1.18g/cm3
Boiling Point 647.6ºC at 760mmHg
Molecular Formula C29H38FN3O3
Molecular Weight 495.62900
Flash Point 345.5ºC
Exact Mass 495.29000
PSA 67.45000
LogP 5.27090
Vapour Pressure 1.17E-16mmHg at 25°C
Index of Refraction 1.585
Storage condition 2-8℃

 Synonyms

Lopac-M-5441
Mibefradil
Posicor
The content on this webpage is sourced from various professional data sources. If you have any questions or concerns regarding the content, please feel free to contact service1@chemsrc.com.