TAK-285 structure
|
Common Name | TAK-285 | ||
---|---|---|---|---|
CAS Number | 871026-44-7 | Molecular Weight | 547.957 | |
Density | 1.4±0.1 g/cm3 | Boiling Point | 705.5±60.0 °C at 760 mmHg | |
Molecular Formula | C26H25ClF3N5O3 | Melting Point | 167-169℃ | |
MSDS | N/A | Flash Point | 380.4±32.9 °C |
Use of TAK-285TAK-285 is a novel dual HER2 and EGFR(HER1) inhibitor with IC50 of 17 nM and 23 nM, >10-fold selectivity for HER1/2 than HER4, less potent to MEK1/5, c-Met, Aurora B, Lck, CSK etc. IC50 value: 17/23 nM (HER2/1) [1]Target: HER1/2in vitro: MEK1, MEK5, c-Met, Aurora B, Lck, CSK, and Lyn B with IC50 of 1.1 μM, 5.7 μM, 4.2 μM, 1.7 μM, 2.4 μM, 4.7 μM, and 5.2 μM, respectively, and displays no activity against other kinases with IC50 of >10 μM. TAK-285 shows significant growth inhibitory activity against BT-474 cells (HER2-overexpressing human breast cancer cell line) with GI50 of 17 nM [1]. Compared with SYR127063 a potent inhibitor of HER2, TAK-285 displays similar in vitro potency against HER2 and EGFR. Compared with the full cytoplasmic domains of the wild-type proteins, the mutations and shortened boundaries used for structure determination of HER2-KD and EGFR-KD do not significantly change the inhibitory activity (IC50) of TAK-285. TAK-285 binds to the inactive conformation of EGFR, and shows a similar binding mode with lapatinib in the active site [2]. in vivo: The oral bioavailability of TAK-285 is 97.7% in rats and 72.2% in mice at a dose of 50 mg/kg. Oral administration of TAK-285 at 100 mg/kg twice daily for 14 days displays significant antitumor efficacy in the HER2-overexpressing BT-474 tumor xenograft mouse model with tumor/control (T/C) ratio of 29%, without affecting body weight. Similar to the BT-474 model, TAK-285 exhibits dose-dependent tumor growth inhibition of 4-1ST (HER2-overexpressing human gastric cancer tumor) xenografts in mice, with T/C of 44% and 11% at doses of 50 mg/kg and 100 mg/kg, twice daily, respectively, without significant body weight loss in mice [1]. After oral administration of TAK-285, a significant amount of TAK-285 is present in the brain of rats in pharmacologically active, unbound form (approximately 20% of its free plasma level), indicating that TAK-285 has a potential in the therapy of CNS malignancies/metastases [3]. |
Name | N-[2-[4-[3-chloro-4-[3-(trifluoromethyl)phenoxy]anilino]pyrrolo[3,2-d]pyrimidin-5-yl]ethyl]-3-hydroxy-3-methylbutanamide |
---|---|
Synonym | More Synonyms |
Description | TAK-285 is a novel dual HER2 and EGFR(HER1) inhibitor with IC50 of 17 nM and 23 nM, >10-fold selectivity for HER1/2 than HER4, less potent to MEK1/5, c-Met, Aurora B, Lck, CSK etc. IC50 value: 17/23 nM (HER2/1) [1]Target: HER1/2in vitro: MEK1, MEK5, c-Met, Aurora B, Lck, CSK, and Lyn B with IC50 of 1.1 μM, 5.7 μM, 4.2 μM, 1.7 μM, 2.4 μM, 4.7 μM, and 5.2 μM, respectively, and displays no activity against other kinases with IC50 of >10 μM. TAK-285 shows significant growth inhibitory activity against BT-474 cells (HER2-overexpressing human breast cancer cell line) with GI50 of 17 nM [1]. Compared with SYR127063 a potent inhibitor of HER2, TAK-285 displays similar in vitro potency against HER2 and EGFR. Compared with the full cytoplasmic domains of the wild-type proteins, the mutations and shortened boundaries used for structure determination of HER2-KD and EGFR-KD do not significantly change the inhibitory activity (IC50) of TAK-285. TAK-285 binds to the inactive conformation of EGFR, and shows a similar binding mode with lapatinib in the active site [2]. in vivo: The oral bioavailability of TAK-285 is 97.7% in rats and 72.2% in mice at a dose of 50 mg/kg. Oral administration of TAK-285 at 100 mg/kg twice daily for 14 days displays significant antitumor efficacy in the HER2-overexpressing BT-474 tumor xenograft mouse model with tumor/control (T/C) ratio of 29%, without affecting body weight. Similar to the BT-474 model, TAK-285 exhibits dose-dependent tumor growth inhibition of 4-1ST (HER2-overexpressing human gastric cancer tumor) xenografts in mice, with T/C of 44% and 11% at doses of 50 mg/kg and 100 mg/kg, twice daily, respectively, without significant body weight loss in mice [1]. After oral administration of TAK-285, a significant amount of TAK-285 is present in the brain of rats in pharmacologically active, unbound form (approximately 20% of its free plasma level), indicating that TAK-285 has a potential in the therapy of CNS malignancies/metastases [3]. |
---|---|
Related Catalog | |
Target |
EGFR:23 nM (IC50) HER2:17 nM (IC50) |
References |
Density | 1.4±0.1 g/cm3 |
---|---|
Boiling Point | 705.5±60.0 °C at 760 mmHg |
Melting Point | 167-169℃ |
Molecular Formula | C26H25ClF3N5O3 |
Molecular Weight | 547.957 |
Flash Point | 380.4±32.9 °C |
Exact Mass | 547.159790 |
PSA | 104.79000 |
LogP | 3.56 |
Vapour Pressure | 0.0±2.4 mmHg at 25°C |
Index of Refraction | 1.608 |
Storage condition | -20℃ |
3poz |
3rcd |
n-(2-(4-((3-chloro-4-(3-(trifluoromethyl)phenoxy)phenyl)amino)-5h-pyrrolo(3,2-d)pyrimidin-5-yl)ethyl)-3-hydroxy-3-methylbutanamide |
TAK-285 |
N-{2-[4-({3-Chloro-4-[3-(trifluoromethyl)phenoxy]phenyl}amino)-5H-pyrrolo[3,2-d]pyrimidin-5-yl]ethyl}-3-hydroxy-3-methylbutanamide |
03P |
Butanamide, N-[2-[4-[[3-chloro-4-[3-(trifluoromethyl)phenoxy]phenyl]amino]-5H-pyrrolo[3,2-d]pyrimidin-5-yl]ethyl]-3-hydroxy-3-methyl- |