Apoptosis is a distinctive form of cell death exhibiting specific morphological and biochemical characteristics, including cell membrane blebbing, chromatin condensation, genomic DNA fragmentation, and exposure of specific phagocytosis signaling molecules on the cell surface. Cells undergoing apoptosis differ from those dying through necrosis. Necrotic cells are usually recognized by the immune system as a danger signal and, thus, resulting in inflammation; in contrast, apoptotic death is quiet and orderly. There are two major pathways of apoptotic cell death induction: The intrinsic pathway, also called the Bcl-2-regulated or mitochondrial pathway, is activated by various developmental cues or cytotoxic insults, such as viral infection, DNA damage and growth-factor deprivation, and is strictly controlled by the BCL-2 family of proteins. The extrinsic or death-receptor pathway is triggered by ligation of death receptors (members of the tumor necrosis factor (TNF) receptor family, such as Fas or TNF receptor-1 (TNFR1)) that contain an intracellular death domain, which can recruit and activate caspase-8 through the adaptor protein Fas-associated death domain (FADD; also known as MORT1) at the cell surface. This recruitment causes subsequent activation of downstream (effector) caspases, such as caspase-3, -6 or -7, without any involvement of the BCL-2 family. Studies suggest that alterations in cell survival contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, autoimmune diseases, neurodegenerative disorders, and AIDS (acquired immunodeficiency syndrome). Treatments designed to specifically alter the apoptotic threshold may have the potential to change the natural progression of some of these diseases.


Anti-infection >
Arenavirus Bacterial CMV Enterovirus Filovirus Fungal HBV HCV HIV HSV Influenza Virus Parasite Reverse Transcriptase RSV SARS-CoV
Antibody-drug Conjugate >
ADC Cytotoxin ADC Linker Drug-Linker Conjugates for ADC PROTAC-linker Conjugate for PAC
Apoptosis >
Apoptosis Bcl-2 Family c-Myc Caspase DAPK Ferroptosis IAP MDM-2/p53 PKD RIP kinase Survivin Thymidylate Synthase TNF Receptor
Autophagy >
Autophagy LRRK2 ULK Mitophagy
Cell Cycle/DNA Damage >
Antifolate APC ATM/ATR Aurora Kinase Casein Kinase CDK Checkpoint Kinase (Chk) CRISPR/Cas9 Deubiquitinase DNA Alkylator/Crosslinker DNA-PK DNA/RNA Synthesis Eukaryotic Initiation Factor (eIF) G-quadruplex Haspin Kinase HDAC HSP IRE1 Kinesin LIM Kinase (LIMK) Microtubule/Tubulin Mps1 Nucleoside Antimetabolite/Analog p97 PAK PARP PERK Polo-like Kinase (PLK) PPAR RAD51 ROCK Sirtuin SRPK Telomerase TOPK Topoisomerase Wee1
Cytoskeleton >
Arp2/3 Complex Dynamin Gap Junction Protein Integrin Kinesin Microtubule/Tubulin Mps1 Myosin PAK
Epigenetics >
AMPK Aurora Kinase DNA Methyltransferase Epigenetic Reader Domain HDAC Histone Acetyltransferase Histone Demethylase Histone Methyltransferase JAK MicroRNA PARP PKC Sirtuin Protein Arginine Deiminase
GPCR/G Protein >
5-HT Receptor Adenosine Receptor Adenylate Cyclase Adiponectin Receptor Adrenergic Receptor Angiotensin Receptor Bombesin Receptor Bradykinin Receptor Cannabinoid Receptor CaSR CCR CGRP Receptor Cholecystokinin Receptor CRFR CXCR Dopamine Receptor EBI2/GPR183 Endothelin Receptor GHSR Glucagon Receptor Glucocorticoid Receptor GNRH Receptor GPCR19 GPR109A GPR119 GPR120 GPR139 GPR40 GPR55 GPR84 Guanylate Cyclase Histamine Receptor Imidazoline Receptor Leukotriene Receptor LPL Receptor mAChR MCHR1 (GPR24) Melatonin Receptor mGluR Motilin Receptor Neurokinin Receptor Neuropeptide Y Receptor Neurotensin Receptor Opioid Receptor Orexin Receptor (OX Receptor) Oxytocin Receptor P2Y Receptor Prostaglandin Receptor Protease-Activated Receptor (PAR) Ras RGS Protein Sigma Receptor Somatostatin Receptor TSH Receptor Urotensin Receptor Vasopressin Receptor Melanocortin Receptor
Immunology/Inflammation >
Aryl Hydrocarbon Receptor CCR Complement System COX CXCR FLAP Histamine Receptor IFNAR Interleukin Related IRAK MyD88 NO Synthase NOD-like Receptor (NLR) PD-1/PD-L1 PGE synthase Salt-inducible Kinase (SIK) SPHK STING Thrombopoietin Receptor Toll-like Receptor (TLR) Arginase
JAK/STAT Signaling >
EGFR JAK Pim STAT
MAPK/ERK Pathway >
ERK JNK KLF MAP3K MAP4K MAPKAPK2 (MK2) MEK Mixed Lineage Kinase MNK p38 MAPK Raf Ribosomal S6 Kinase (RSK)
Membrane Transporter/Ion Channel >
ATP Synthase BCRP Calcium Channel CFTR Chloride Channel CRAC Channel CRM1 EAAT2 GABA Receptor GlyT HCN Channel iGluR Monoamine Transporter Monocarboxylate Transporter Na+/Ca2+ Exchanger Na+/HCO3- Cotransporter Na+/K+ ATPase nAChR NKCC P-glycoprotein P2X Receptor Potassium Channel Proton Pump SGLT Sodium Channel TRP Channel URAT1
Metabolic Enzyme/Protease >
15-PGDH 5 alpha Reductase 5-Lipoxygenase Acetyl-CoA Carboxylase Acyltransferase Adenosine Deaminase Adenosine Kinase Aldehyde Dehydrogenase (ALDH) Aldose Reductase Aminopeptidase Angiotensin-converting Enzyme (ACE) ATGL ATP Citrate Lyase Carbonic Anhydrase Carboxypeptidase Cathepsin CETP COMT Cytochrome P450 Dipeptidyl Peptidase Dopamine β-hydroxylase E1/E2/E3 Enzyme Elastase Enolase FAAH FABP Factor Xa Farnesyl Transferase Fatty Acid Synthase (FAS) FXR Glucokinase GSNOR Gutathione S-transferase HCV Protease Hexokinase HIF/HIF Prolyl-Hydroxylase HIV Integrase HIV Protease HMG-CoA Reductase (HMGCR) HSP Indoleamine 2,3-Dioxygenase (IDO) Isocitrate Dehydrogenase (IDH) Lactate Dehydrogenase LXR MAGL Mineralocorticoid Receptor Mitochondrial Metabolism MMP Nampt NEDD8-activating Enzyme Neprilysin PAI-1 PDHK PGC-1α Phosphatase Phosphodiesterase (PDE) Phospholipase Procollagen C Proteinase Proteasome Pyruvate Kinase RAR/RXR Renin ROR Ser/Thr Protease SGK Stearoyl-CoA Desaturase (SCD) Thrombin Tryptophan Hydroxylase Tyrosinase Xanthine Oxidase
Neuronal Signaling >
5-HT Receptor AChE Adenosine Kinase Amyloid-β Beta-secretase CaMK CGRP Receptor COMT Dopamine Receptor Dopamine Transporter FAAH GABA Receptor GlyT iGluR Imidazoline Receptor mAChR Melatonin Receptor Monoamine Oxidase nAChR Neurokinin Receptor Opioid Receptor Serotonin Transporter γ-secretase
NF-κB >
NF-κB IKK Keap1-Nrf2 MALT1
PI3K/Akt/mTOR >
Akt AMPK ATM/ATR DNA-PK GSK-3 MELK mTOR PDK-1 PI3K PI4K PIKfyve PTEN
PROTAC >
PROTAC E3 Ligase Ligand-Linker Conjugate Ligand for E3 Ligase PROTAC Linker PROTAC-linker Conjugate for PAC
Protein Tyrosine Kinase/RTK >
Ack1 ALK Bcr-Abl BMX Kinase Btk c-Fms c-Kit c-Met/HGFR Discoidin Domain Receptor DYRK EGFR Ephrin Receptor FAK FGFR FLT3 IGF-1R Insulin Receptor IRAK Itk PDGFR PKA Pyk2 ROS Src Syk TAM Receptor Trk Receptor VEGFR
Stem Cell/Wnt >
Casein Kinase ERK Gli GSK-3 Hedgehog Hippo (MST) JAK Notch Oct3/4 PKA Porcupine ROCK sFRP-1 Smo STAT TGF-beta/Smad Wnt YAP β-catenin γ-secretase
TGF-beta/Smad >
TGF-beta/Smad PKC ROCK TGF-β Receptor
Vitamin D Related >
VD/VDR
Others >
Androgen Receptor Aromatase Estrogen Receptor/ERR Progesterone Receptor Thyroid Hormone Receptor Others

5-Fluorouracil-13C,15N2

5-Fluorouracil-13C,15N2 is the 13C and 15N labeled 5-Fluorouracil[1]. 5-Fluorouracil (5-FU) is an analogue of uracil and a potent antitumor agent. 5-Fluorouracil affects pyrimidine synthesis by inhibiting thymidylate synthetase thus depleting intracellular dTTP pools. 5-Fluorouracil induces apoptosis and can be used as a chemical sensitizer[2][3]. 5-Fluorouracil also inhibits HIV[4].

  • CAS Number: 1189423-58-2
  • MF: C313CH3F15N2O2
  • MW: 133.057
  • Catalog: HIV
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Zeylenone

Zeylenone, isolated from ethanol extract of the leaves of Uvaria grandiflora Roxb. Zeylenone, a naturally occurring cyclohexene oxide, inhibits proliferation and induces apoptosis in cervical carcinoma cells via PI3K/AKT/mTOR and MAPK/ERK pathways[1].

  • CAS Number: 193410-84-3
  • MF: C21H18O7
  • MW: 382.363
  • Catalog: Apoptosis
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 569.6±50.0 °C at 760 mmHg
  • Melting Point: 150-152℃
  • Flash Point: 201.4±23.6 °C

UCM-1336

UCM-1336 is a potent ICMT inhibitor, with an IC50 of 2 μM. UCM-1336 induces mislocalization of endogenous Ras, decreases Ras activation and induces cell death by autophagy and apoptosis[1].

  • CAS Number: 1621535-90-7
  • MF: C26H37N3O2
  • MW: 423.59
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Brazilein

Brazilein is an important immunosuppressive component isolated from Caesalpinia sappan L. Brazilein induces apoptosis in mice spleen lymphocytes[1].

  • CAS Number: 600-76-0
  • MF: C16H12O5
  • MW: 284.26300
  • Catalog: Apoptosis
  • Density: 1.65g/cm3
  • Boiling Point: 683.8ºC at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 264.9ºC

Aminopurvalanol A

Aminopurvalanol A is a potent, selective, and cell permeable inhibitor of Cyclins/Cdk complexes. Aminopurvalanol A preferentially targets the G2/M-phase transition inhibiting cancer cell differentiation. Aminopurvalanol A causes the inhibition of sperm fertilizing ability via the inhibition of physiological capacitation-dependent actin polymerization[1][2].

  • CAS Number: 220792-57-4
  • MF: C19H26ClN7O
  • MW: 403.90900
  • Catalog: Apoptosis
  • Density: 1.4g/cm3
  • Boiling Point: 639ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 340.2ºC

Antitumor agent-60

Antitumor agent-60 (compound 20) is a potent antitumor agent, targeting RAS-RAF signaling pathway and binding to CRAF with a Kd value of 3.93 μM. Antitumor agent-60 induces apoptosis by blocking cell cycle at G2/M phase. Antitumor agent-60 enhances the level of p53 and ROS. Antitumor agent-60 causes oval and irregular nucleus in cancer cells. Antitumor agent-60 can suppress the growth of tumor to some extent in A549 xenograft model[1].

  • CAS Number: 865784-65-2
  • MF: C24H28O10S
  • MW: 508.54
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

MBM-17S

MBM-17S is a potent NIMA-related kinase 2 (Nek2) inhibitor, with an IC50 of 3 nM. MBM-17S effectively inhibits the proliferation of cancer cells by inducing cell cycle arrest and apoptosis. MBM-17S shows antitumor activities, and no obvious toxicity to mice[1].

  • CAS Number: 2083621-91-2
  • MF: C36H40N6O10
  • MW: 716.74
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Dehydroeffusol

Dehydroeffusol is a phenanthrene from medicinal herb Juncus effuses. Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. It shows very low toxicity[1][2].

  • CAS Number: 137319-34-7
  • MF: C17H14O2
  • MW: 250.29200
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Linderalactone

Linderalactone is an important sesquiterpene lactone isolated from Radix linderae. Linderalactone inhibits cancer growth by modulating the expression of apoptosis-related proteins and inhibition of JAK/STAT signalling pathway. Linderalactone also inhibits the proliferation of the lung cancer A-549 cells with an IC50 of 15 µM[1][2].

  • CAS Number: 728-61-0
  • MF: C15H16O3
  • MW: 244.286
  • Catalog: Apoptosis
  • Density: 1.2±0.1 g/cm3
  • Boiling Point: 437.9±45.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 218.6±28.7 °C

lithium O-acetylsalicylate

Aspirin (Acetylsalicylic Acid) lithium is an orally active, potent and irreversible inhibitor of cyclooxygenase COX-1 and COX-2, with IC50 values of 5 and 210 μg/mL, respectively. Aspirin lithium induces apoptosis. Aspirin lithium inhibits the activation of NF-κB. Aspirin lithium also inhibits platelet prostaglandin synthetase, and can prevent coronary artery and cerebrovascular thrombosis[1][2][3][4][5][6].

  • CAS Number: 552-98-7
  • MF: C9H7LiO4
  • MW: 186.09000
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: 321.4ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 131.2ºC

JX 06

JX06 is a potent, selective and covalent inhibitor of PDK. JX06 inhibits PDK1, PDK2 and PDK3 with the IC50s of 49 nM, 101 nM, and 313 nM, respectively. JX06 inhibits PDK1 activity via covalently binding to a cysteine residue in an irreversible manner. JX06 shows significant antitumor activity[1].

  • CAS Number: 729-46-4
  • MF: C10H16N2O2S4
  • MW: 324.50600
  • Catalog: Apoptosis
  • Density: 1.463g/cm3
  • Boiling Point: 466.3ºC at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 235.8ºC

Z-LLY-FMK

Z-LLY-FMK (Calpain Inhibitor IV) is a calpain inhibitor, involved in apoptosis of many cell systems. Z-LLY-FMK inhibits the intestine apoptosis after common bile duct ligation[1].

  • CAS Number: 133410-84-1
  • MF: C30H40FN3O6
  • MW: 557.65
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

N-Acetyl-L-cysteine-d3

Acetylcysteine-d3 (N-Acetylcysteine-d3) is the deuterium labeled Acetylcysteine. Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7].

  • CAS Number: 131685-11-5
  • MF: C5H6D3NO3S
  • MW: 166.21300
  • Catalog: Influenza Virus
  • Density: 1.319 g/cm3
  • Boiling Point: 407.678ºC at 760 mmHg
  • Melting Point: 98-100ºC
  • Flash Point: 200.357ºC

EB-3D

EB-3D is a novel potent and selective choline kinase ChoKα inhibitor with IC50 of 1.0 uM (purified ChoKα1), strongly impairs cell proliferation in a variety of different cancer cell lines; demonstrates in vitro antiproliferative effects against HeLa (IC50=79 nM), RS4,11 (IC50=45 nM), A549 (IC50=27 nM) and MDA-MB-231 (IC50=100 nM); displays excellent antiproliferative activity against a wide cohort of T-leukemic cell lines with GI50 of 0.9 nM (MOLT-16 cell)-479 nM (CCRF-CEM), reduces the intracellular pool of PCho, but also inhibits the synthesis of choline-containing lipids; induces G0/G1 arrest that lead to apoptosis in leukemia cell lines; affects AMPK-mTOR signaling pathway, synergizes with both dexamethasone and L-asparaginase.

  • CAS Number: 1839150-63-8
  • MF: C30H36Br2N4O2
  • MW: 644.452
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

S-99

ASK1-IN-5 (S-99) is an inhibitor of apoptosis signal-regulated kinase 1 (ASK1) and is useful in the study of autoimmune and neurodegenerative diseases[1].

  • CAS Number: 1124381-69-6
  • MF: C16H15F3N6O
  • MW: 364.33
  • Catalog: Apoptosis
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Ascochlorin

Ascochlorin (Ilicicolin D), an isoprenoid antibiotic, mediates its anti-tumor effects predominantly through the suppression of STAT3 signaling cascade. Ascochlorin induces apoptosis. Anti-inflammatory activity[1][2][3].

  • CAS Number: 26166-39-2
  • MF: C23H29ClO4
  • MW: 404.92700
  • Catalog: Apoptosis
  • Density: 1.199g/cm3
  • Boiling Point: 556.9ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 290.6ºC

Rabeprazole D4

Rabeprazole D4 (LY307640 D4) is a deuterium labeled Rabeprazole. Rabeprazole is a second-generation proton pump inhibitor (PPI) that irreversibly inactivates gastric H+/K+-ATPase. Rabeprazole induces apoptosis. Rabeprazole acts as an uridine nucleoside ribohydrolase (UNH) inhibitor with an IC50 of 0.3 μM. Rabeprazole can be used for the research of gastric ulcerations and gastroesophageal reflux[1][2][3].

  • CAS Number: 934295-48-4
  • MF: C18H17D4N3O3S
  • MW: 359.44300
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

3,3'-Disulfanediyldipropanoic acid

Dithiodipropionic acid can interact with CPUL1 (HY-151802, a TrxR inhibitor) to form nanoaggregates (CPUL1-DA NAs). CPUL1-DA NAs generates more abundant ROS to induce cell apoptosis than that of free CPUL1, and improves antitumor efficacy against HUH7 cancer cells[1].

  • CAS Number: 1119-62-6
  • MF: C6H10O4S2
  • MW: 210.271
  • Catalog: Apoptosis
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 431.1±30.0 °C at 760 mmHg
  • Melting Point: 155-158 °C(lit.)
  • Flash Point: 214.5±24.6 °C

4-[3-(2-chloro-10H-phenothiazin-10-yl)propyl]piperazine-1-ethanol dihydrochloride

Perphenazine dihydrochloride is an orally active dopamine receptor and histamine-1 receptor antagonist, with Ki values of 0.56 nM (D2), 0.43 nM (D3), .6 nM (5-HT2A), respectively. Perphenazine dihydrochloride also binds to Alpha-1A adrenergic receptor. Perphenazine dihydrochloride inhibits cancer cell proliferation, and induces apoptosis. Perphenazine dihydrochloride can be used in the research of mental disease, cancer, inflammation[1][3][5].

  • CAS Number: 2015-28-3
  • MF: C21H28Cl3N3OS
  • MW: 476.89100
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: 580.4ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 304.8ºC

EGFR-IN-46

EGFR-IN-46 is a potent EGFR and FAK dual inhibitor with IC50s of 20.17 nM, 14.25 nM, respectively. EGFR-IN-46 significantly inhibits the growth of cancer cells. EGFR-IN-46 induces cell apoptosis[1].

  • CAS Number: 2764772-88-3
  • MF: C27H32F3N3O3
  • MW: 503.56
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

quinidine polygalacturonate

Quinidine polygalacturonate is an antiarrhythmic agent. Quinidine polygalacturonate is a potent, orally active, selective cytochrome P450db inhibitor. Quinidine polygalacturonate is also a K+ channel blocker with an IC50 of 19.9 μM, and can induce apoptosis. Quinidine polygalacturonate can be used for malaria research[1][2][3][4].

  • CAS Number: 27555-34-6
  • MF: C26H34N2O9
  • MW: 518.556
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Ethylene Dimethanesulfonate

Ethylene dimethane sulfonate is a mild alkylating, non-volatile methanesulfonic diester of ethylene glycol. Ethylene dimethanesulfonate has selective pro-apoptotic effects on LCs[1].

  • CAS Number: 4672-49-5
  • MF: C4H10O6S2
  • MW: 218.24900
  • Catalog: Apoptosis
  • Density: 1.461g/cm3
  • Boiling Point: 448.9ºC at 760 mmHg
  • Melting Point: 35-36℃
  • Flash Point: 225.3ºC

1G244

1G244 is a potent DPP8/9 inhibitor with IC50s of 12 nM and 84 nM, respectively. 1G244 does not inhibit DPPIV and DPPII. 1G244 induces apoptosis in multiple myeloma cells and has anti-myeloma effects[1][2].

  • CAS Number: 847928-32-9
  • MF: C29H30F2N4O2
  • MW: 504.57
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

TK216

TK216 directly binds EWS-FLI1 and inhibits EWS-FLI1 protein interactions, leading to a decrease in transcription and proliferation. TK216 blocks the binding between EWS-FLI1 and RNA helicase A. TK216 is active in oncogenesis and inhibits apoptosis[1].

  • CAS Number: 1903783-48-1
  • MF: C19H15Cl2NO3
  • MW: 376.23
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Argpressin acetate

Arginine vasopressin (AVP, also known as antidiuretic hormone (ADH)) is a 9 amino acid neuropeptide secreted by the posterior pituitary. AVP can regulate the biological effects of fluid balance, osmolality and cardiovascular through three separate G-protein coupled receptors (GPCRs), namely Avpr1a (V1a), Avpr1b (V1b) and Avpr2 (V2). AVP also have potentially important effects on centrally regulated metabolic processes[1].

  • CAS Number: 75499-44-4
  • MF: C48H69N15O14S2
  • MW: 1144.28000
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Sotetsuflavone

Sotetsuflavone is a potent inhibitor of DENV-NS5 RdRp (Dengue virus NS5 RNA-dependent RNA polymerase) with an IC50 of 0.16 uM, is the most active compound of this series .

  • CAS Number: 2608-21-1
  • MF: C31H20O10
  • MW: 552.484
  • Catalog: Apoptosis
  • Density: 1.6±0.1 g/cm3
  • Boiling Point: 873.1±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 293.0±27.8 °C

KP1019(FFC14A)

KP1019 (FFC14A) is a Ru(III)-based anti-metastatic and cytotoxic anti-cancer agent. KP1019 induces DNA damage and apoptosis in cancer cells[1][2].

  • CAS Number: 124875-20-3
  • MF: C21H18Cl4N6Ru
  • MW: 598.29800
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Nur77 antagonist 1

Nur77 antagonist 1(Compound ja) is a selective Nur77 antagonist(KDSPRNur77 = 91 nM). Nur77 antagonist 1 induces cancer cell apoptosis. ja displays excellent antitumor against triple-negative breast cancer (TNBC) cells[1].

  • CAS Number: 2378780-25-5
  • MF: C25H32N8OS
  • MW: 492.64
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

HDAC-IN-59

HDAC-IN-59 (compound 13a) is a potent histone deacetylase (HDAC) inhibitor. HDAC-IN-59 can promote the intracellular generation of ROS, cause DNA damage, block the cell cycle at G2/M phase, and activate the mitochondria-related apoptotic pathway to induce cell apoptosis[1].

  • CAS Number: 2944459-43-0
  • MF: C20H25NO7
  • MW: 391.42
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

PARP1-IN-10

PARP1-IN-10 (compound 12c) is a no-cytotoxicity and potent PARP1 inhibitor with an IC50 value of 50.62 nM in vitro. PARP1-IN-10 causes cell cycle arrest at G2/M phase and apoptosis, and enhances the cytotoxicity of temozolomide (TMZ) [1].

  • CAS Number: 2494001-21-5
  • MF: C20H23N3O5
  • MW: 385.41
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A