4-Oxofenretinide (4-Oxo-4-HPR) is a metabolite of Fenretinide (HY-15373). 4-Oxofenretinide induces cell growth inhibition in ovarian, breast, and neuroblastoma tumor cell lines. 4-Oxofenretinide causes a marked accumulation of cells in G2-M. 4-Oxofenretinide induces cancer cell apoptosis through caspase-9[1].
Panaxydol is isolated from Panax ginseng roots. Panaxydol induces mitochondria-mediated apoptosis. Panaxydol has the potential to be an anticancer agent, especially for EGFR-addicted cancer[1].
SC75741 is a broad and efficient NF-κB inhibitor with an IC50 of 200 nM for p65[1]. SC75741 blocks influenza viruses (IV) replication in non-toxic concentrations. SC75741 impairs DNA binding of the NF-κB subunit p65, resulting in reduced expression of cytokines, chemokines, and pro-apoptotic factors. SC75741 subsequently inhibits caspase activation and blocks caspase-mediated nuclear export of viral ribonucleoproteins[2].
Lithocholic acid-d5 is deuterium labeled Lithocholic acid.
Prexasertib Mesylate Hydrate (LY2606368 Mesylate Hydrate) is a potent, selective, ATP competitive CHK1 and CHK2 inhibitor, with a Ki of 0.9 nM for CHK1 and IC50s of <1 nM, 8 nM for CHK1 and CHK2, respectively. Prexasertib Mesylate Hydrate inhibits HT-29 CHK1 autophosphorylation (S296) and HT-29 CHK2 autophosphorylation (S516). Prexasertib Mesylate Hydrate shows potent anti-tumor activity, significantly abrogates the G2/M checkpoint in p53 deficient HeLa cells with an EC50 of 9 nM[1].
Antitumor agent-62 (Compound 47) is a NO-releasing antitumor agent. Antitumor agent-62 shows antiproliferative activity against four cancer cell lines. Antitumor agent-62 activates mitochondrial apoptosis pathway and arrests cell cycle at G2/M phase[1].
Desethylamiodarone (N-Deethylamiodarone) is the major metabolite of antiarrhythmic compound Amiodarone (HY-14187). Desethylamiodarone has antiarrhythmic activity. Desethylamiodaron also induces cancer cell apoptosis[1][2].
Pentosan Polysulfate is a semi-synthetic drug used to treat various medical conditions including thrombi and interstitial cystitis.
Fenobucarb-d3 is the deuterium labeled Fenobucarb. Fenobucarb is a carbamate insecticide. Fenobucarb induces zebrafish developmental neurotoxicity through pathways involved in inflammation, oxidative stress, degeneration and apoptosis[1].
Antitumor agent-110 (compound 13) is an anticancer imidazotetrazine with good permeability properties. Antitumor agent-110 arrests cell cycel at G2/M phase, and induces apoptosis[1].
Anticancer agent 83 is a potent anticancer agent, inhibits LOX IMVI cells growth with a GI50 value of 0.15 mM. Anticancer agent 83 reduces mitochondrial membrane potential and induces DNA damage to induces leukemia cells apoptosis[1].
Shizukaol D is a dimeric sesquiterpene isolated from Chloranthus serratus. Shizukaol D induces apoptosis and attenuated Wnt signalling[1].
MI-1061 is a potent, orally bioavailable, and chemically stable MDM2 (MDM2-p53 interaction) inhibitor (IC50=4.4 nM; Ki=0.16 nM). MI-1061 potently activates p53, induces apoptosis, and has anti-tumor activity[1].
LCH-7749944 (GNF-PF-2356) is a potent PAK4 inhibitor with an IC50 of 14.93 μM. LCH-7749944 effectively suppresses the proliferation of human gastric cancer cells through downregulation of PAK4/c-Src/EGFR/cyclin D1 pathway and induces apoptosis[1].
Roxadustat-d5 is deuterium labeled Roxadustat. Roxadustat is an oral hypoxia-inducible factor prolyl-hydroxylase inhibitor (HIF-PHI) that promotes erythropoiesis through increasing endogenous erythropoietin, improving iron regulation, and reducing hepcidin[1].
Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
NWP-0476 is BCL-2/BCL-xL inhibitor. NWP-0476 has a modified structure with fine-tuned BCL-xL activity. NWP-0476 can be used for relapsed T-acute lymphoblastic leukemia (T-ALL) research[1].
Venetoclax-d8 is deuterium labeled Venetoclax. Venetoclax (ABT-199; GDC-0199) is a highly potent, selective and orally bioavailable Bcl-2 inhibitor with a Ki of less than 0.01 nM. Venetoclax induces autophagy[1][2][3].
CP-24879 (hydrochloride) is a potent, selective and combined delta5D/delta6D inhibitor. CP-24879 (hydrochloride) can significantly reduce intracellular lipid accumulation and inflammatory injury in hepatocytes. CP-24879 (hydrochloride) exhibits superior antisteatotic and anti-inflammatory actions in fat-1 and ω-3-treated hepatocytes, and can be used for non-alcoholic steatohepatitis research[1][2].
Taurochenodeoxycholic acid sodium salt (12-Deoxycholyltaurine sodium salt) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].
Mitoxantrone diacetate is a potent topoisomerase II inhibitor. Mitoxantrone diacetate also inhibits protein kinase C (PKC) activity with an IC50 of 8.5 μM. Mitoxantrone diacetate induces apoptosis of B-CLL (B-chronic lymphocytic leukaemia) cells. Mitoxantrone diacetate shows antitumor activity[1][2][3][4]. Mitoxantrone diacetate also has anti-orthopoxvirus activity with EC50s of 0.25 μM and and 0.8 μM for cowpox and monkeypox, respectively[5].
Cycloheximide (Naramycin A) is an eukaryote protein synthesis inhibitor, with IC50s of 532.5 nM and 2880 nM for protein synthesis and RNA synthesis in vivo, respectively.
Nargenicin A1 is an antibiotic agent against various Gram-positive bacteria. Nargenicin A1 shows anti-inflammatory activity. Nargenicin A1 protects HINAE cells against Tacrolimus (HY-13756)-induced DNA damage and apoptosis. Nargenicin A1 can also be used for the research of acute myeloid leukemia[1].
TC11 is a MCL1 degradator and Caspase-9 and CDK1 activator. TC11 structurally relates to immunomodulatory drugs as phenylphthalimide derivative. TC11 induces apoptotic death caused by degradation of MCL1 during prolonged mitotic arrest[1][2].
BRD4 Inhibitor-18 is a highly potent BRD4 inhibitor with IC50 value of 110 nM. BRD4 Inhibitor-18 has a hydrophobic acetylcyclopentanyl side chain. BRD4 Inhibitor-18 can significantly suppress the proliferation of MV-4-11 cells with high BRD4 level. BRD4 Inhibitor-18 has apoptosis-promoting and G0/G1 cycle-arresting activity[1].
Flavokawain A, a proming anticarcinogenic agent, is a chalcone from kava extract with anti-tumor activity. Flavokawain A induces cell apoptosis by involvement of Bax protein-dependent and mitochondria-dependent apoptotic pathway. Flavokawain A has the potential for the study of bladder cancer[1].
Betamethasone-d5-1 is deuterium labeled Betamethasone. Betamethasone is a synthetic glucocorticoid with anti-inflammatory and immunosuppressive activities. Betamethasone accelerates fetal lung maturation and induces gene expression and apoptosis[1][2][3][4].
Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].
Capmatinib (INC280; INCB28060) dihydrochloride is a potent, orally active, selective, and ATP competitive c-Met kinase inhibitor (IC50=0.13 nM). Capmatinib dihydrochloride can inhibit phosphorylation of c-MET as well as c-MET pathway downstream effectors such as ERK1/2, AKT, FAK, GAB1, and STAT3/5. Capmatinib dihydrochloride potently inhibits c-MET-dependent tumor cell proliferation and migration and effectively induces apoptosis. Antitumor activity. Capmatinib dihydrochloride is largely metabolized by CYP3A4 and aldehyde oxidase[1][2][3].
DB1976 is a selenophene analog of DB270 and a potent and cell-permeable fully efficacious transcription factor PU.1 inhibitor. DB1976 potently inhibits PU.1 binding (IC50 of 10 nM) and strongly inhibits the PU.1/DNA complex (with high DB1976-λB affinity, KD of 12 nM) in vitro. DB1976 has apoptosis-inducing effect[1][2][3].