Cell Cycle includes many processes necessary for successful self-replication, and consists of DNA synthesis (S) and mitosis (M) phases separated by gap phases in the order G1–S–G2–M. S phase and M phase are usually separated by gap phases called G1 and G2, when cell-cycle progression can be regulated by various intracellular and extracellular signals. In order to move from one phase of its life cycle to the next, a cell must pass through numerous checkpoints. At each checkpoint, specialized proteins determine whether the necessary conditions exist. Progression through G1 phase is controlled by pRB proteins, and phosphorylation of pRB proteins by CDKs releases E2F factors, promoting the transition to S phase. The G2/M transition that commits cells to division is a default consequence of initiating the cell cycle at the G1/S transition, many proteins, such Wee1, PLK1 and cdc25, is involved the regulation of this process. The best-understood checkpoints are those activated by DNA damage and problems with DNA replication.

DNA damage response (DDR) is a series of regulatory events including DNA damage, cell-cycle arrest, regulation of DNA replication, and repair or bypass of DNA damage to ensure the maintenance of genomic stability and cell viability. Genome instability arises if cells initiate mitosis when chromosomes are only partially replicated or are damaged by a double-strand DNA break (DSB). To prevent cells with damaged DNA from entering mitosis, ATR inhibits cyclin B/Cdk1 activation by stimulating the Cdk1 inhibitory kinase Wee1 and inhibiting Cdc25C via Chk1, besides, ATM and ATR also initiate DNA repair by phosphorylating several other substrates.

In cancer cells, the cell cycle regulators as well as other elements of the DDR pathway have been found to protect tumor cells from different stresses and to promote tumor progression. Thus, cell cycle proteins that directly regulate cell cycle progression (such as CDKs), as well as checkpoint kinases, Aurora kinases and PLKs, are promising targets in cancer therapy.

References:
[1] Rhind N, et al. Cold Spring Harb Perspect Biol. 2012 Oct; 4(10): a005942.
[2] Duronio RJ, et al. Cold Spring Harb Perspect Biol. 2013 Mar; 5(3): a008904.
[3] Liu W, et al. Mol Cancer. 2017 Mar 14;16(1):60.
[4] Ghelli Luserna di Rora' A, et al. J Hematol Oncol. 2017 Mar 29;10(1):77.


Anti-infection >
Arenavirus Bacterial CMV Enterovirus Filovirus Fungal HBV HCV HIV HSV Influenza Virus Parasite Reverse Transcriptase RSV SARS-CoV
Antibody-drug Conjugate >
ADC Cytotoxin ADC Linker Drug-Linker Conjugates for ADC PROTAC-linker Conjugate for PAC
Apoptosis >
Apoptosis Bcl-2 Family c-Myc Caspase DAPK Ferroptosis IAP MDM-2/p53 PKD RIP kinase Survivin Thymidylate Synthase TNF Receptor
Autophagy >
Autophagy LRRK2 ULK Mitophagy
Cell Cycle/DNA Damage >
Antifolate APC ATM/ATR Aurora Kinase Casein Kinase CDK Checkpoint Kinase (Chk) CRISPR/Cas9 Deubiquitinase DNA Alkylator/Crosslinker DNA-PK DNA/RNA Synthesis Eukaryotic Initiation Factor (eIF) G-quadruplex Haspin Kinase HDAC HSP IRE1 Kinesin LIM Kinase (LIMK) Microtubule/Tubulin Mps1 Nucleoside Antimetabolite/Analog p97 PAK PARP PERK Polo-like Kinase (PLK) PPAR RAD51 ROCK Sirtuin SRPK Telomerase TOPK Topoisomerase Wee1
Cytoskeleton >
Arp2/3 Complex Dynamin Gap Junction Protein Integrin Kinesin Microtubule/Tubulin Mps1 Myosin PAK
Epigenetics >
AMPK Aurora Kinase DNA Methyltransferase Epigenetic Reader Domain HDAC Histone Acetyltransferase Histone Demethylase Histone Methyltransferase JAK MicroRNA PARP PKC Sirtuin Protein Arginine Deiminase
GPCR/G Protein >
5-HT Receptor Adenosine Receptor Adenylate Cyclase Adiponectin Receptor Adrenergic Receptor Angiotensin Receptor Bombesin Receptor Bradykinin Receptor Cannabinoid Receptor CaSR CCR CGRP Receptor Cholecystokinin Receptor CRFR CXCR Dopamine Receptor EBI2/GPR183 Endothelin Receptor GHSR Glucagon Receptor Glucocorticoid Receptor GNRH Receptor GPCR19 GPR109A GPR119 GPR120 GPR139 GPR40 GPR55 GPR84 Guanylate Cyclase Histamine Receptor Imidazoline Receptor Leukotriene Receptor LPL Receptor mAChR MCHR1 (GPR24) Melatonin Receptor mGluR Motilin Receptor Neurokinin Receptor Neuropeptide Y Receptor Neurotensin Receptor Opioid Receptor Orexin Receptor (OX Receptor) Oxytocin Receptor P2Y Receptor Prostaglandin Receptor Protease-Activated Receptor (PAR) Ras RGS Protein Sigma Receptor Somatostatin Receptor TSH Receptor Urotensin Receptor Vasopressin Receptor Melanocortin Receptor
Immunology/Inflammation >
Aryl Hydrocarbon Receptor CCR Complement System COX CXCR FLAP Histamine Receptor IFNAR Interleukin Related IRAK MyD88 NO Synthase NOD-like Receptor (NLR) PD-1/PD-L1 PGE synthase Salt-inducible Kinase (SIK) SPHK STING Thrombopoietin Receptor Toll-like Receptor (TLR) Arginase
JAK/STAT Signaling >
EGFR JAK Pim STAT
MAPK/ERK Pathway >
ERK JNK KLF MAP3K MAP4K MAPKAPK2 (MK2) MEK Mixed Lineage Kinase MNK p38 MAPK Raf Ribosomal S6 Kinase (RSK)
Membrane Transporter/Ion Channel >
ATP Synthase BCRP Calcium Channel CFTR Chloride Channel CRAC Channel CRM1 EAAT2 GABA Receptor GlyT HCN Channel iGluR Monoamine Transporter Monocarboxylate Transporter Na+/Ca2+ Exchanger Na+/HCO3- Cotransporter Na+/K+ ATPase nAChR NKCC P-glycoprotein P2X Receptor Potassium Channel Proton Pump SGLT Sodium Channel TRP Channel URAT1
Metabolic Enzyme/Protease >
15-PGDH 5 alpha Reductase 5-Lipoxygenase Acetyl-CoA Carboxylase Acyltransferase Adenosine Deaminase Adenosine Kinase Aldehyde Dehydrogenase (ALDH) Aldose Reductase Aminopeptidase Angiotensin-converting Enzyme (ACE) ATGL ATP Citrate Lyase Carbonic Anhydrase Carboxypeptidase Cathepsin CETP COMT Cytochrome P450 Dipeptidyl Peptidase Dopamine β-hydroxylase E1/E2/E3 Enzyme Elastase Enolase FAAH FABP Factor Xa Farnesyl Transferase Fatty Acid Synthase (FAS) FXR Glucokinase GSNOR Gutathione S-transferase HCV Protease Hexokinase HIF/HIF Prolyl-Hydroxylase HIV Integrase HIV Protease HMG-CoA Reductase (HMGCR) HSP Indoleamine 2,3-Dioxygenase (IDO) Isocitrate Dehydrogenase (IDH) Lactate Dehydrogenase LXR MAGL Mineralocorticoid Receptor Mitochondrial Metabolism MMP Nampt NEDD8-activating Enzyme Neprilysin PAI-1 PDHK PGC-1α Phosphatase Phosphodiesterase (PDE) Phospholipase Procollagen C Proteinase Proteasome Pyruvate Kinase RAR/RXR Renin ROR Ser/Thr Protease SGK Stearoyl-CoA Desaturase (SCD) Thrombin Tryptophan Hydroxylase Tyrosinase Xanthine Oxidase
Neuronal Signaling >
5-HT Receptor AChE Adenosine Kinase Amyloid-β Beta-secretase CaMK CGRP Receptor COMT Dopamine Receptor Dopamine Transporter FAAH GABA Receptor GlyT iGluR Imidazoline Receptor mAChR Melatonin Receptor Monoamine Oxidase nAChR Neurokinin Receptor Opioid Receptor Serotonin Transporter γ-secretase
NF-κB >
NF-κB IKK Keap1-Nrf2 MALT1
PI3K/Akt/mTOR >
Akt AMPK ATM/ATR DNA-PK GSK-3 MELK mTOR PDK-1 PI3K PI4K PIKfyve PTEN
PROTAC >
PROTAC E3 Ligase Ligand-Linker Conjugate Ligand for E3 Ligase PROTAC Linker PROTAC-linker Conjugate for PAC
Protein Tyrosine Kinase/RTK >
Ack1 ALK Bcr-Abl BMX Kinase Btk c-Fms c-Kit c-Met/HGFR Discoidin Domain Receptor DYRK EGFR Ephrin Receptor FAK FGFR FLT3 IGF-1R Insulin Receptor IRAK Itk PDGFR PKA Pyk2 ROS Src Syk TAM Receptor Trk Receptor VEGFR
Stem Cell/Wnt >
Casein Kinase ERK Gli GSK-3 Hedgehog Hippo (MST) JAK Notch Oct3/4 PKA Porcupine ROCK sFRP-1 Smo STAT TGF-beta/Smad Wnt YAP β-catenin γ-secretase
TGF-beta/Smad >
TGF-beta/Smad PKC ROCK TGF-β Receptor
Vitamin D Related >
VD/VDR
Others >
Androgen Receptor Aromatase Estrogen Receptor/ERR Progesterone Receptor Thyroid Hormone Receptor Others

DMT-2'-F-dC(Bz)-CE-Phosphoramidite

DMT-2'-F-dC(Bz)-CE-Phosphoramidite is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

  • CAS Number: 182495-83-6
  • MF: C48H55FN5O8P
  • MW: 879.95
  • Catalog: Nucleoside Antimetabolite/Analog
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Zoliflodacin

Zoliflodacin (ETX0914;AZD0914) is a novel spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor. Zoliflodacin has potent in vitro antibacterial activity against Gram-positive and Gram-negative organisms, including S. aureus with the MIC90 of 0.25 μg/mL.

  • CAS Number: 1620458-09-4
  • MF: C22H22FN5O7
  • MW: 487.438
  • Catalog: Bacterial
  • Density: 1.6±0.1 g/cm3
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Inixaciclib

Inixaciclib is a potent CDK inhibitor, that can be used to research anticancer.

  • CAS Number: 2370913-42-9
  • MF: C26H30F2N6O
  • MW: 480.55
  • Catalog: CDK
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

5'-O-DMT-N4-Isobutyryl-2'-deoxycytidine-3'-CE phosphoramidite

IBU-DC Phosphoramidite is used for synthesis of oligonucleotides[1].

  • CAS Number: 110522-84-4
  • MF: C43H54N5O8P
  • MW: 799.891
  • Catalog: DNA/RNA Synthesis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

oxolinic acid

Oxolinic acid is a potent inhibitor of DNA gyrase and DNA synthesis, lead to DNA cleavage when extracted chromosomes are incubated with sodium dodecyl sulfate.

  • CAS Number: 14698-29-4
  • MF: C13H11NO5
  • MW: 261.230
  • Catalog: DNA/RNA Synthesis
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 473.2±45.0 °C at 760 mmHg
  • Melting Point: 314-316°C (dec.)
  • Flash Point: 240.0±28.7 °C

eIF4A3-IN-13

eIF4A3-IN-13 (compound 75) is a silvestrol (HY-13251) analogue. eIF4A3-IN-13 interferes the assembling of eIF4F translation complex with EC50s of 0.6, 15 and 0.4 nM for myc-LUC, tub-LUC and the growth inhibition for MBA-MB-231 cells. eIF4A3-IN-13 can be used for the research of human cancer pathogenesis[1].

  • CAS Number: 1402931-85-4
  • MF: C28H28ClNO6
  • MW: 509.98
  • Catalog: Eukaryotic Initiation Factor (eIF)
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

USP7-IN-7

USP7-IN-7 (compound 124) is a USP7 inhibitor with an IC50 value <10 nM. USP7-IN-7 shows cytotoxicity against p53-mutant cancer cell lines, p53 wild-type blood cancer and neuroblastoma cell lines with low nanomolar values. USP7-IN-7 can be used for cancer research[1].

  • CAS Number: 2413944-70-2
  • MF: C27H28ClN3O3S
  • MW: 510.05
  • Catalog: Deubiquitinase
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Tubulin inhibitor 26

Tubulin inhibitor 26 (compound 3c) is a potent inhibitor of tubulin. Tubulin inhibitor 26 is an indazole derivative compound. Tubulin inhibitor 26 shows noteworthy low nanomolar potency against HepG2, HCT116, SW620, HT29 and A549 cancer cell lines. Tubulin inhibitor 26 arrests tumor cell in G2/M phase and induced cell apoptosis. Tubulin inhibitor 26 suppresses tumor growth in vivo without affecting the mice body weight[1].

  • CAS Number: 2379241-70-8
  • MF: C17H19N3O3
  • MW: 313.35
  • Catalog: Microtubule/Tubulin
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Niranthin

Niranthin, a lignan with a wide spectrum of pharmacological activities. Niranthin is a potent and non-competitive inhibitor of heterodimeric type IB topoisomerase of L. donovani. Niranthin can be used for the research of drug-resistant leishmaniasis treatment[1].

  • CAS Number: 50656-77-4
  • MF: C24H32O7
  • MW: 432.507
  • Catalog: Topoisomerase
  • Density: 1.1±0.1 g/cm3
  • Boiling Point: 559.5±50.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 221.8±30.0 °C

KNK437

KNK437 is a HSP inhibitor, and inhibits the induction of HSP105, HSP70, and HSP40.

  • CAS Number: 218924-25-5
  • MF: C13H11NO4
  • MW: 245.231
  • Catalog: HSP
  • Density: 1.5±0.1 g/cm3
  • Boiling Point: 412.4±55.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 203.2±31.5 °C

HDAC6-IN-6

HDAC6-IN-6 (compound 6a) is a potent and BBB-penetrated HDAC6 inhibitor, with an IC50 of 0.025 μM. HDAC6-IN-6 exhibits strong inhibitory activity against Aβ1-42 self-aggregation and AChE, with IC50 values of 3.0 and 0.72 μM. HDAC6-IN-6 can enhance neurite outgrowth without significant neurotoxicity[1].

  • CAS Number: 2413603-10-6
  • MF: C20H15N3O2
  • MW: 329.35
  • Catalog: HDAC
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

5-Iodo-3’-deoxy-3’-fluorouridine

5-Iodo-3’-deoxy-3’-fluorouridine is a purine nucleoside analogue. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

  • CAS Number: 2072145-21-0
  • MF:
  • MW:
  • Catalog: Nucleoside Antimetabolite/Analog
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

AN-9

Pivanex (AN-9), a derivative of Butyric acid, is an HDAC inhibitor with antimetastic and antiangiogenic properties. Pivanex down-regulates bcr-abl protein and enhances apoptosis[1].

  • CAS Number: 122110-53-6
  • MF: C10H18O4
  • MW: 202.24800
  • Catalog: Apoptosis
  • Density: 1.008g/cm3
  • Boiling Point: 249.3ºC at 760mmHg
  • Melting Point: N/A
  • Flash Point: 113ºC

4-Hydroperoxy Cyclophosphamide-d4

4-Hydroperoxy Cyclophosphamide-d4 is the deuterium labeled 4-Hydroperoxy cyclophosphamide. 4-Hydroperoxy cyclophosphamide is the active metabolite form of the prodrug Cyclophosphamide. 4-Hydroperoxy cyclophosphamide crosslinks DNA and induces T cell apoptosis independent of death receptor activation, but activates mitochondrial death pathways through production of reactive oxygen species (ROS). 4-Hydroperoxy cyclophosphamide has the potential for lymphomas and autoimmune disorders[1][2].

  • CAS Number: 1246816-71-6
  • MF: C7H11D4Cl2N2O4P
  • MW: 297.11
  • Catalog: Apoptosis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

GW9662

GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.

  • CAS Number: 22978-25-2
  • MF: C13H9ClN2O3
  • MW: 276.675
  • Catalog: PPAR
  • Density: 1.4±0.1 g/cm3
  • Boiling Point: 360.9±32.0 °C at 760 mmHg
  • Melting Point: 171-175 °C(lit.)
  • Flash Point: 172.0±25.1 °C

Ribociclib-d8

Ribociclib-d8 is the deuterium labeled Ribociclib[1]. Ribociclib (LEE01) is a highly specific CDK4/6 inhibitor with IC50 values of 10 nM and 39 nM, respectively, and is over 1,000-fold less potent against the cyclin B/CDK1 complex[2].

  • CAS Number: 2167898-24-8
  • MF: C23H22D8N8O
  • MW: 442.59
  • Catalog: CDK
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

RI-1

RI-1 is a RAD51 inhibitor with IC50 ranging from 5 to 30 μM.IC50 Value: 5-30 μMTarget: RAD51in vitro: RI-1 sensitizes cells to DNA damage by directly and specifically disrupting HsRAD51 and inhibiting the ability of RAD51 to form filaments on ssDNA. In addition, RI-1 alone generates single-agent toxicity in all three cancer cell lines (HeLa, MCF-7 and U2OS) with LD50 values in the 20–40 μM range. RI-1 decreases the rejoining of γ-H2AX foci in G2 phase cells and results in a higher level of unrepaired DSBs 6 hours after irradiation. in vivo:

  • CAS Number: 415713-60-9
  • MF: C14H11Cl3N2O3
  • MW: 361.608
  • Catalog: RAD51
  • Density: 1.6±0.1 g/cm3
  • Boiling Point: 483.0±45.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 245.9±28.7 °C

NHC-triphosphate

NHC-triphosphate is an intracellular metabolite of β-d-N4-Hydroxycytidine (NHC) as a triphosphate form. NHC-triphosphate is a weak alternative substrate for the viral polymerase and changes the mobility of the product in polyacrylamide electrophoresis gels[1].

  • CAS Number: 34973-27-8
  • MF: C9H16N3O15P3
  • MW: 499.15600
  • Catalog: HCV
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

HDAC-IN-29

HDAC-IN-29 (compound 13b) is a potent pan-HDAC inhibitor. HDAC-IN-29 shows antitumor activity[1].

  • CAS Number: 2695593-95-2
  • MF: C20H23N3O4S
  • MW: 401.48
  • Catalog: HDAC
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

CKI-7

CKI-7 is a potent and ATP-competitive casein kinase 1 (CK1) inhibitor with an IC50 of 6 μM and a Ki of 8.5 μM. CKI-7 is a selective Cdc7 kinase inhibitor. CKI-7 also inhibits SGK, ribosomal S6 kinase-1 (S6K1) and mitogen- and stress-activated protein kinase-1 (MSK1). CKI-7 has a much weaker effect on casein kinase II and other protein kinases[1][2][3][4].

  • CAS Number: 120615-25-0
  • MF: C11H12ClN3O2S
  • MW: 285.75000
  • Catalog: Casein Kinase
  • Density: 1.432g/cm3
  • Boiling Point: 499.7ºC at 760mmHg
  • Melting Point: 188-190ºC
  • Flash Point: 256ºC

SIRT5 inhibitor 4

SIRT5 inhibitor 4 (compound 11) is a potent, selective SIRT5 inhibitor with IC50 values of 26.4 and >400μM for SIRT5 and other SIRT subtype, respectively[1].

  • CAS Number: 708992-34-1
  • MF: C18H15N3O4S
  • MW: 369.39
  • Catalog: Sirtuin
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Palmitic acid-d2-1

Palmitic acid-d2-1 is the deuterium labeled Palmitic acid. Palmitic acid is a long-chain saturated fatty acid commonly found in both animals and plants. Palmitic acid can induce the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in in mouse granulosa cells[1][2].

  • CAS Number: 62690-28-2
  • MF: C16H30D2O2
  • MW: 258.43600
  • Catalog: HSP
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

HDAC-IN-38

HDAC-IN-38 (compound 13) is a potent HDAC inhibitor. HDAC-IN-38 shows similar micro-molar inhibitory activity toward HDAC1, 2, 3, 5, 6, and 8. HDAC-IN-38 increases cerebral blood flow (CBF), attenuates cognitive impairment, and improves hippocampal atrophy. HDAC-IN-38 also increases the level of histone acetylation (H3K14 or H4K5)[1].

  • CAS Number: 2408123-36-2
  • MF: C27H28ClN3O2
  • MW: 461.98
  • Catalog: HDAC
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

SG2057

SG2057 (DRG16) is a PBD dimer containing a pentyldioxy linkage which binds sequence selectively in the minor groove of DNA forming DNA interstrand and intrastrand cross-linked adducts. SG2057 is a highly active antitumor agent[1].

  • CAS Number: 260417-62-7
  • MF: C33H36N4O6
  • MW: 584.662
  • Catalog: ADC Cytotoxin
  • Density: 1.3±0.1 g/cm3
  • Boiling Point: 820.0±65.0 °C at 760 mmHg
  • Melting Point: N/A
  • Flash Point: 449.7±34.3 °C

N4-Bz-5'-O-DMTr-3'-deoxy-3'-fluoro-beta-D-xylofuranosyl cytidine-2'-CED-phosphoramidite

N4-Benzoyl-5’-O-(4,4’-dimethoxytrityl)-3’-deoxy-3’-fluoro-beta-D-xylofuranosyl cytidine-2’-CED-phosphoramidite is a phosphoramidite that can be used in the synthesis of oligonucleotides.

  • CAS Number: 1555759-30-2
  • MF: C46H51FN5O8P
  • MW: 851.90
  • Catalog: DNA/RNA Synthesis
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Aldoxorubicin•HCl

Aldoxorubicin (INNO-206) hydrochloride is an albumin-binding proagent of Doxorubicin (DNA topoisomerase II inhibitor), which is released from albumin under acidic conditions. Aldoxorubicin hydrochloride (INNO-206) has potent antitumor activities in various cancer cell lines and in murine tumor models.

  • CAS Number: 1361563-03-2
  • MF: C37H43ClN4O13
  • MW: 787.21
  • Catalog: ADC Cytotoxin
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

N6-Ethyl-2’-O-methyladenosine

N6-Ethyl-2’-O-methyladenosine is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

  • CAS Number: 157309-11-0
  • MF: C13H19N5O4
  • MW: 309.32
  • Catalog: Nucleoside Antimetabolite/Analog
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

CDK7-IN-5

CDK7-IN-5 is a CDK7 inhibitor with an IC50 value <100 nM. CDK7-IN-5 has anticancer effects. (WO2015154022A1 (Compound 104))[1].

  • CAS Number: 1817006-50-0
  • MF: C34H45N9O2
  • MW: 611.78
  • Catalog: CDK
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

2’,3’-Bis(O-t-butyldimethylsilyl)-2-thiouridine

2’,3’-Bis(O-t-butyldimethylsilyl)-2-thiouridine is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

  • CAS Number: 2305415-97-6
  • MF: C21H40N2O5SSi2
  • MW: 488.79
  • Catalog: Nucleoside Antimetabolite/Analog
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A

Ragaglitazar

Ragaglitazar is a PPARα and PPARγ agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic.

  • CAS Number: 222834-30-2
  • MF: C25H25NO5
  • MW: 419.47000
  • Catalog: PPAR
  • Density: N/A
  • Boiling Point: N/A
  • Melting Point: N/A
  • Flash Point: N/A