cis-Clovamide, a natural phenolic compound with antioxidant, anti-inflammatory and antiapoptotic activities[1].
Tauroursodeoxycholate-d4-1 is the deuterium labeled Tauroursodeoxycholate. Tauroursodeoxycholate (Tauroursodeoxycholic acid) is an endoplasmic reticulum (ER) stress inhibitor. Tauroursodeoxycholate significantly reduces expression of apoptosis molecules, such as caspase-3 and caspase-12. Tauroursodeoxycholate also inhibits ERK.
KS106 is a potent ALDH inhibitor with IC50s of 334, 2137, 360 nM for ALDH1A1, ALDH2, and ALDH3A1, respectively. KS106 shows antiproliferative and anticancer effects with low low toxic.KS106 significantly increases ROS activity, lipid peroxidation and toxic aldehyde accumulation. KS106 induces apoptosis and cell cycle arrest at the G2/M phase[1].
CAY10404 is a potent and highly selective cyclooxygenase-2 (COX-2) inhibitor with an IC50 of 1 nM. CAY10404 exhibits no inhibition of COX-1 (IC50>500 µM)[1]. CAY10404 is a potent inhibitor of PKB/Akt and MAPK signaling pathways and induces apoptosis in NSCLC cells. CAY10404, a diarylisoxazole, has good analgesic, anti-inflammatory, and anti-cancer activities[2][3].
Multi-kinase-IN-1 (Compound 11k) is a potent kinase inhibitor with antitumor activity. Multi-kinase-IN-1 induces cell apoptosis, and can be studied for colorectal cancer[1].
JTE-013 is a potent and specific S1P2 (Sphingosine-1-Phosphate 2; EDG-5) antagonist. JTE-013 inhibits the specific binding of radiolabeled S1P to human and rat S1P2 with IC50s of 17 nM and 22 nM, respectively[1].
Genistein 8-c-glucoside (G8CG) is a natural glucoside isolated from flowers of Lupinus luteus L. Genistein 8-c-glucoside induces mitochondrial membrane depolarization and induces apoptosis[1].
Adarotene is an effective apoptosis inducer, which surprisingly produces DNA damage and exhibites a potent antiproliferative activity on a large panel of human tumor cells.
EGFR-IN-59 (Compound 8c) is a EGFR inhibitor (IC50=190 nM) and apoptosis inducer. EGFR-IN-59 exhibits cytotoxicity against non-small lung cancer cell lines (A549) and normal lung fibroblasts (WI38) with IC50s of 8.62 and 52.6 µM, respectively. EGFR-IN-59 can be used for the research of various cancers such as non-small cell lung cancer (NSCLC), head and neck cancer, breast cancer and colorectal cancer[1].
Pectic acid (Methyl protopectin), a polygalacturonic acid, induces cell apoptosis and necrosis in pituitary tumor cells. Pectic acid can be used in the research of cancers and autoimmune disease[2][3].
Ketorolac (RS37619) hemicalcium is a non-steroidal anti-inflammatory drug (NSAID), acting as a nonselective COX inhibitor, with IC50s of 20 nM for COX-1 and 120 nM for COX-2. Ketorolac tromethamine is used as 0.5% ophthalmic solution for the research of allergic conjunctivitis, cystoid macular edema, intraoperative miosis, and postoperative ocular inflammation and pain. Ketorola chemicalcium is also a DDX3 inhibitor that can be used for cancer research[1][4].
JGB1741 (ILS-JGB-1741) is a potent and specific SIRT1 activity inhibitor with an IC50 of ∼15 μM. JGB1741 is a weak SIRT2 and SIRT3 inhibitor with an all IC50>100 μM. JGB1741 increases the acetylated p53 levels leading to p53-mediated apoptosis with modulation of Bax/Bcl2 ratio, cytochrome c release and PARP cleavage. JGB1741 has the potential for breast cancer research[1].
Oleic acid-d9 is deuterium labeled Oleic acid. Oleic acid is an abundant monounsaturated fatty acid. Oleic acid is a Na+/K+ ATPase activator[1][2].
PI3Kδ-IN-16 is a potent and selective inhibitor of PI3Kδ. PI3Kδ-IN-16 has a strong anti-proliferative effect on cells, causing cell cycle arrest and inducing apoptosis[1].
DC-CPin711 is a potent and selective inhibitor of CREB-binding protein (CBP) bromodomain with an IC50 of 0.0626 μM. DC-CPin711 arrests cell cycle at G1 phase and induces apoptosis[1].
Ubiquitin Isopeptidase Inhibitor I, G5 (NSC 144303) is an apoptosome-independent caspase and apoptosis activator with IC50 values of 1.76 and 1.6 μM in E1A and E1A/C9DN cells, respectively.
4-Vinylphenol is found in the medicinal herb Hedyotis diffusa Willd, wild rice and is also the metabolite of p-coumaric and ferulic acid by lactic acid bacteria in wine. 4-Vinylphenol induces apoptosis and inhibits blood vessels formation and suppresses invasive breast tumor growth in vivo[1].
MMP-9-IN-3 is a MMP-9 inhibitor (IC50: 5.56 nM) that forms hydrogen bond with MMP-9. MMP-9-IN-3 also inhibits AKT activity (IC50: 2.11 nM). MMP-9-IN-3 shows cell cytotoxicity and induces cell apoptosis. MMP-9-IN-3 can be used in the research of cancers[1].
Ac-DEVD-CMK (Caspase-3 Inhibitor III) is a selective and irreversible caspase-3 inhibitor. Ac-DEVD-CMK significantly inhibits apoptosis induced by high levels of glucose or 3,20-dibenzoate (IDB; HY-137295). Ac-DEVD-CMK can be used in a variety of experimental approaches to inhibit apoptosis[1][2][3].
Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].
Helichrysetin, isolated from the flowers of Helichrysum odoratissimum, is an ID2 (inhibitor of DNA binding 2) inhibitor, and suppresses DCIS (ductal carcinoma in situ) formation. Helichrysetin possess strong inhibitory effects on cell growth and is capable of inducing apoptosis in A549 cells[1][2].
α-NETA is a potent and noncompetitive choline acetyltransferase (ChA) inhibitor with an IC50 of 9 μM. α-NETA is a potent ALDH1A1 (IC50=0.04 µM) and chemokine-like receptor-1 (CMKLR1) antagonist. α-NETA weakly inhibits cholinesterase (ChE; IC50=84 µM) and acetylcholinesterase (AChE; IC50=300 µM). α-NETA has anti-cancer activity[1][2].
Apoptosis inducer 9 induces apoptosis with IC50 value of 4.21 μM. Apoptosis inducer 9 induces apoptosis through the mitochondrial pathway and enhance the expression of Cl-caspase-3, Cl-caspase-9 and Cl-PARP. Apoptosis inducer 9 can be used the potential to develop new anti-proliferative agents[1].
Tubulin polymerization-IN-9 is a potent tubulin inhibitor with IC50 of 1.82 μM. Tubulin polymerization-IN-9 causes cell cycle arrest at G2/M phase, and induces cell apoptosis and depolarized mitochondria of K562 cells. Tubulin polymerization-IN-9 has potent anti-vascular and antitumor activities[1].
Angiotensin II human acetate (Angiotensin II acetate) is a vasoconstrictor that mainly acts on the AT1 receptor. Angiotensin II human acetate stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human acetate induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human acetate also induces apoptosis[1][2].
Pipermethystine is an alkaloid that can be isolated from the Kava plant. Pipermethystine decreases HepG2 cell cellular ATP levels, mitochondrial membrane potential, and induces apoptosis[1].
Topoisomerase I inhibitor 5 is an effective topoisomerase inhibitor with IC50 value of. Topoisomerase I inhibitor 5 can interfere with DNA and significantly inhibit the activity of Topoisomerase I. Topoisomerase I inhibitor 5 can arrest cell cycle at the G1 phase and induce MCF-7 cells apoptosis. Topoisomerase I inhibitor 5 has potency in reversing P-gp-mediated resistance to Adriamycin[1].
Kauran-16,17-diol (ent-Kauran-16β,17-diol), a natural diterpene, posseses anti-tumor and inducing-apoptosis activity, with a IC50 of 17 μM on inhibiting NO production in LPS-stimulated RAW 264.7 macrophages[1][2].
Quercetin is a natural flavonoid which activates or inhibits the activities of a number of proteins. Quercetin can activate SIRT1 and inhibit PI3K with IC50s of 2.4 μM, 3.0 μM, 5.4 μM for PI3K γ, PI3K δ and PI3K β, respecti
Taraxerol is isolated from Abroma augusta L, and has anti-inflammtory and anti-cancer effects. Taraxerol attenuates acute inlammation through inhibition of NF-κB signaling pathway. Taraxerol induces cell apoptosis[1][2].