Trijuganone C, a natural product extracted from Salvia miltiorrhiza, inhibits the proliferation of cancer cells through induction of apoptosis mediated by mitochondrial dysfunction and caspase activation[1].
Visilizumab (Anti-Human CD3E Recombinant Antibody) is a humanized low-Fc receptor binding anti-CD3 monoclonal IgG2 antibody. Visilizumab can be used for ulcerative colitis and Crohn's disease research[1].
VS 8 (Compound VS 8) is a potent, orally active VEGFR-2 inhibitor with significant anti-angiogenic effects. VS 8 induces cancer cell apoptosis and migration. VS 8 is active against CSCs (Cancer stem cells)[1].
Koenimbine is an anticancer agent that can be obtained from the leaves and fruits of Murraya koenigii. Koenimbine can induce apoptosis and necrosis in HT-29 and SW48 cells. Koenimbine can be used in the research of cancer[1].
GNE-900 is a an ATP-competitive, selective, and orally active ChK1 inhibitor with IC50s of 0.0011, 1.5 µM for ChKl, ChK2, respectively. GNE-900 abrogates the G2-M checkpoint, enhances DNA damage, and induces Apoptosis. gemcitabine (HY-17026) and GNE-900 administration shows anti-tumor activity[1].
m-3M3FBS is a potent phospholipase C (PLC) activator. m-3M3FBS stimulates superoxide generation in human neutrophils, upregulates intracellular calcium concentration, and stimulates inositol phosphate generation in various cell lines. m-3M3FBS induces monocytic leukemia cell apoptosis[1][2][3].
20(R)-Ginsenoside Rh2, a matrix metalloproteinase (MMP) inhibitor, acts as a cell antiproliferator. It has anticancer effects via blocking cell proliferation and causing G1 phase arrest. 20(R)-Ginsenoside Rh2 induces apoptosis, and has anti-inflammatory and antioxidative activity[1][2][3].
Hypocretin (70-98), human is a polypeptide that is capable of binding to an orexin receptor OX1R and promotes Apoptosis[1].
MDM2-p53-IN-16 is a MDM2-p53 complex inhibitor with an IC50 value of 4.3 nM to dissociate human p53/MDM2 complex. MDM2-p53-IN-16 reactivates p53, and induces Glioblastoma Multiforme (GBM) cell apoptosis and cell-cycle arrest. MDM2-p53-IN-16 can be used for the cancer research[1].
Ibuprofen ((±)-Ibuprofen) sodium is an orally active, selective COX-1 inhibitor with an IC50 value of 13 μM. Ibuprofen sodium inhibits cell proliferation, angiogenesis, and induces cell apoptosis. Ibuprofen sodium is a nonsteroidal anti-inflammatory agent and a nitric oxide (NO) donor. Ibuprofen sodium can be used in the research of pain, swelling, inflammation, infection, immunology, cancers[1][2][5][8].
Anticancer agent 72 (compound 8c) is a potent inhibitor of K+ channel. Anticancer agent 72 induces apoptosis[1].
Ac-DEVD-CHO is a specific Caspase-3 inhibitor with a Ki value of 230 pM.
Pantoprazole-d3 is deuterium labeled Pantoprazole. Pantoprazole (BY10232) is an orally active and potent proton pump inhibitor (PPI)[1]. Pantoprazole, a substituted benzimidazole, is a potent H+/K+-ATPase inhibitor with an IC50 of 6.8 μM. Pantoprazole improves pH stability and has anti-secretory, anti-ulcer activities. Pantoprazole significantly increased tumor growth delay combined with Doxorubicin (HY-15142)[3][4].
Maduramicin ammonium (Maduramycin ammonium) is isolated from the actinomycete Actinomadura rubra. Maduramicin ammonium (Maduramycin ammonium) is an anticoccidial agent for the the treatment of Eimeria spp., E. adenoeides, E. gallopavonis, and E. dispersa infection[1]. Maduramicin ammonium (Maduramycin ammonium) induces cell apoptosis in chicken myocardial cells via intrinsic and extrinsic pathways[2].
IC 86621 is a potent DNA-dependent protein kinase (DNA-PK) inhibitor, with an IC50 of 120 nM. IC 86621 also acts as a selective and reversible ATP-competitive inhibitor.IC 86621 inhibits DNA-PK mediated cellular DNA double-strand break (DSB) repair (EC50=68 µM). IC 86621 increases DSB-induced antitumor activity without cytotoxic effects. IC 86621 can protects rheumatoid arthritis (RA) T cells from apoptosis[1][2].
Quercetin D5 is a deuterium labeled Quercetin. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
PROTAC MDM2 Degrader-1 is a MDM2 degrader based on PROTAC technology. PROTAC MDM2 Degrader-1 composes of a potent MDM2 inhibitor, linker, and the MDM2 ligand for E3 ubiquitin ligase[1].
Tauro-β-muricholic acid (TβMCA) is a trihydroxylated bile acid. Tauro-β-muricholic acid is a competitive and reversible FXR antagonist (IC50 = 40 μM). Tauro-β-muricholic acid has antiapoptotic effect. Tauro-β-muricholic acid inhibits bile acid-induced hepatocellular apoptosis by maintaining the mitochondrial membrane potential[1][2].
PDPOB is a phenyl carboxylic acid derivative. PDPOB displays protective roles against OGD/R-evoked multiaspect neuronal deterioration in SH-SY5Y cells, as evidenced by alleviated mitochondrial dysfunction, oxidative stress, and apoptosis. PDPOB has the potential for the research of cerebral ischemia[1].
TD52, an Erlotinib (HY-50896) derivative, is an orally active, potent cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibitor. TD52 mediates the apoptotic effect in triple-negative breast cancer (TNBC) cells via regulating the CIP2A/PP2A/p-Akt signalling pathway. TD52 indirectly reduced CIP2A by disturbing Elk1 binding to the CIP2A promoter. TD52 has less p-EGFR inhibition and has potent anti-cancer activity[1].
A novel, spectfic c-Myc IRES (internal ribosome entry site) function inhibitor that prevents binding of hnRNP A1 to the Myc IRES and specifically inhibits Myc IRES activity in MM cells; shows no effect on BAG-1, XIAP and p53 IRESes, and has no significant effect on myc translation; significantly inhibits myc expression when combined with ER stress inducers, especially bortezomib; shows synergistic anti-MM cytotoxicity combined with ER stress inducers; also blocks cyclin D1 IRES-dependent initiation and demonstrates synergistic anti-GBM properties combined with PP242.
Vildagliptin-d3 (LAF237-d3) is the deuterium labeled Vildagliptin. Vildagliptin (LAF237) is a potent, stable, selective dipeptidyl peptidase IV (DPP-IV) inhibitor with an IC50 of 3.5 nM in human Caco-2 cells. Vildagliptin possesses excellent oral bioavailability and potent antihyperglycemic activity[1][2].
p53-MDM2-IN-1 (Example 30) is an inhibitor of p53-MDM2/X protein interaction with an Ki value of 23.35 µM. p53-MDM2-IN-1 can be used for anti-tumor research[1].
Lutein is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1].
Goniothalamin (GTN) is styryllactone with anticancer, anti-inflammatory, immunosuppressive properties. Goniothalamin induces cytotoxicity, DNA damage and apoptosis of a variety of cancer cell lines[1].
Dehydrocrenatidine, a β-carboline alkaloid that can be isolated from Picrasma quassioides. Dehydrocrenatidine induces cell Apoptosis by activates ERK and JNK. Dehydrocrenatidine inhibits invasion and migration of cancer cells, it also suppresses neuronal excitability to exert analgesic effects[1][2].
NSC49652 (NSC 49652) is a compound targeting the transmembrane domain (TMD) of death receptor p75NTR with IC50 of 10 uM in AraTM assays, alters the relative conformation of p75NTR TMDs and induces dynamic changes in the full-length receptor in mammalian cells; induces apoptosis through p75NTR and the JNK pathway in neurons and affects the viability of melanoma cells, reduces tumor growth and improves survival in human melanoma xenograft model, orally available.
Bax BH3 peptide (55-74), wild type is a 20-amino acid Bax BH3 peptide (Bax 1) capable of inducing apoptosis in a variety of cell line models[1].
Enniatin A1 isolated from Fusarium mycotoxins is a cyclic hexadepsipeptide consisting of alternating D-α-hydroxyisovaleric acids and N-methyl-L-amino acids. Enniatin A1 possesses anticarcinogenic properties by induction of apoptosis and disruption of ERK signalling pathway. Enniatin A1 inhibits ACAT with an IC50 of 49 μM in rat liver microsomes[1].
Cycloartenol, a phytosterol compound, is one of the key precusor substances for biosynthesis of numerous sterol compounds. Cycloartenol inhibits the migration of glioma cells and suppresses the phosphorylation of the p38 MAP kinase. Cycloartenol has a variety of pharmacological activities such as anti-inflammatory, anti-tumor, antioxidant, antibiosis and anti-alzheimer's disease. Cycloartenol also plays an important role in the process of plant growth and development[1][2].